To: EDGES Group
From: Alan E.E. Rogers
Subject: EDGES data analysis

1] Spectrum calibration and bandpass removal

The EDGES radiometric spectrometer takes spectra in 3 switch positions.

<table>
<thead>
<tr>
<th>Sw posn.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ambient load</td>
</tr>
<tr>
<td>1</td>
<td>Ambient load + calibration noise</td>
</tr>
<tr>
<td>2</td>
<td>Ambient load + antenna input</td>
</tr>
</tbody>
</table>

If the effects on mismatch are ignored

\[
p_0 = g(T_L + T_R)(1 + n_0)
\]
\[
p_1 = g(T_L + T_R + T_{cal})(1 + n_1)
\]
\[
p_3 = g(T_A + T_R)(1 + n_2)
\]

where

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0, p_1, p_2)</td>
<td>are the power spectra</td>
</tr>
<tr>
<td>(g)</td>
<td>frequency dependent gain or bandpass</td>
</tr>
<tr>
<td>(T_L)</td>
<td>Ambient load temperature</td>
</tr>
<tr>
<td>(T_R)</td>
<td>Total receiver noise</td>
</tr>
<tr>
<td>(T_{cal})</td>
<td>Calibration noise</td>
</tr>
<tr>
<td>(T_A)</td>
<td>Antenna temperature</td>
</tr>
<tr>
<td>(n_0, n_1, n_2)</td>
<td>Gaussian noise = ((b\tau_i)^{1/2})</td>
</tr>
<tr>
<td>(b)</td>
<td>Resolution bandwidth (Hz)</td>
</tr>
<tr>
<td>(\tau_i)</td>
<td>Integration time (sec)</td>
</tr>
</tbody>
</table>

From equations 1,2,3
\[T_A = T_{cal} \frac{(p_2 - p_o)}{(p_1 - p_o)} + T_L \]
\[= \frac{T_{cal} g (T_A - T_L) + n_2 (T_A + T_R) - n_0 (T_L + T_R)}{g (T_{cal} + n_1 (T_L + T_R) + T_{cal} - n_0 (T_L + T_R))} + T_L \]
\[= \left[(T_A - T_L) + n_2 (T_A + T_R) - n_0 (T_L + T_R) \right] \]
\[\times \left[1 + n_1 (T_L + T_R + T_{cal}) T_{cal}^{-1} - n_0 (T_L + T_R) T_{cal}^{-1} \right] + T_L \]
\[= T_A + n_0 \left((T_L + T_R) (T_A - T_L) T_{cal}^{-1} - (T_L + T_R) \right) \]
\[+ n_1 (T_L + T_R + T_{cal}) (T_A - T_L) T_{cal}^{-1} + n_2 (T_A + T_R) \]
\[= T_A - n_0 (T_L + T_R) + n_1 (T_A - T_L) + n_2 (T_A + T_R) \]
\[\text{when } T_{cal} \gg T_L \]

If the total time for a 3 position switch cycle is T and \(f_0, f_1, \) and \(f_2 \) are the fractions of time spent in each position the noise in a measurement of \(T_A \) is

\[\left[\left(f_0 b T \right)^{-1} (T_L + T_R)^2 \left(f_1 b T \right)^{-1} (T_A - T_L)^2 + \left(f_2 b T \right)^{-1} (T_A + T_R)^2 \right]^{1/2} \]
\[= \left(\frac{5}{2} \right)^{1/2} b^{-1/2} T^{1/2} \left(T_A^2 + T_L^2 + 2 (T_A - T_L)^2 \right)^{1/2} \]

when TR is small and \(f_0, f_1, \) and \(f_2 \) are 2/5, 1/5, 2/5 respectively. For example if \(T_A = T_L = 300K \) and \(T = 30 \text{ sec} \) (b = 122 kHz)
\[\Delta T_A \text{ rms } \sim 550 \text{mK} \]

If the results of 100 cycles (~ 1 hour) are averaged and the resolution is smoothed to 1 MHz the rms noise is reduced to approximately 20 mK.

2] RFI reduction

There are a number of options for RFI reduction. The most extreme is to excise any cycle which has any spectral point above 10 sigma. A less extreme approach is to exclude spectra channels which exceed 10 sigma or some other fixed threshold.

3] Processing method

a. Perform calibration on each cycle using equation (4)
b. Search for 10 sigma deviations in residuals to sliding polynomial fit of n terms over m spectral points. Mark rfi channels and save rfi spectrum separately.
c. Remove cable ripple by fitting ripple period plus polynomial if in absolute mode.
 - cable x (x = cable length in ft)
d. Correct for cable attenuation
e. Correct for antenna VSWR and balun loss
f. Calculate VSWR if in VSWR mode
g. Remove polynomial with n terms
 control – npoly n (default 0)
h. Plot waterfall with max scale of 10⁹K
control –water n

For averages

i. Average results of each cycle keeping rfi removed points separate for plotting in blue. Also estimate noise for each spectral point.

j. Remove bestfit polynomial from average

k. Smooth over n spectral points
 Control: - smooth n (default 0)

l. Set linear plot scale max and min
 Control: - lin max_min (default 0-0)

m. Convert to fractional units if desired
 Control – ppm 1 (default 0)

The steps c thru c are controlled by the keyword “cor”

- cor 1 EOR mode – no cable correction
- cor 2 EOR mode – corrects for cable
- cor 3 absolute antenna temperature
- cor 4 - not used
- cor 5 VSWR mode – returns reflection coefficient