To: EDGES Group
From: Alan E.E. Rogers
Subject: Cancellation of 3-position switch noise bias

Memos 18, 46, 147, 176 and 230 discuss the 3-position switch. The noise bias in the switch can be removed, to first order, as follows:

Currently the spectral data is converted to temperature using

\[T = T_{\text{cal}} \left(p_a - p_\ell \right) / \left(p_c - p_\ell \right) + T_{\text{load}} \]

where

- \(p_a \) = power on antenna
- \(p_\ell \) = power on load
- \(p_c \) = power on load plus internal noise cal
- \(T_{\text{cal}} \) = fixed temperature assumed for noise cal
- \(T_{\text{load}} \) = fixed temperature assumed for load

\(T_{\text{cal}} \) and \(T_{\text{load}} \) can be any value as long as the same values are used for the first stage processing of data from the field and data from the calibration in the laboratory.

From a Taylor expansion

\[(1+n)^{-1} = 1 - n + n^2 - n^3 + n^4 ... \] so that if \(n \) is the fractional Gaussian noise

\[\langle (1+n)^{-1} \rangle = 1 + \langle \sigma^2 \rangle + \langle \sigma^4 \rangle + ... \]

\[= 1 + c + 3c^2 + \]

where \(c \) is the noise fraction

\[c = \left(p_\ell^2 + p_c^2 \right) a^2 / \left(p_c - p_\ell \right)^2 \]

where \(a = (bt)^{1/2} \)

where \(b \) = resolution bandwidth

\(t \) = integration time for \(p_c \) and \(p_\ell \) which are assumed to be equal.
In the current software

\[b = 6.10 \text{ kHz} \]
\[t = 6.71 \text{ seconds} \]

To first order the 3-position switch bias is corrected by multiplying by \((1+c)\) so that

\[T = T_{\text{cal}} (1+c) \left(\frac{pa - p\ell}{pc - pl} \right) + T_{\text{load}} \]

For a large noise cal \(c \sim \left(\frac{bt}{b} \right)^{-1} \sim 2.5 \times 10^{-5} \) for receiver1 \(c \sim 6 \times 10^{-5} \)

The value of \(c \) doesn’t depend on the backend as long as the noise contribution of the backend contribution is small.

A test of the effects on the lowband1 data were made by processing the calibration and the field data using the first order correction.

<table>
<thead>
<tr>
<th>freq (MHz)</th>
<th>SNR</th>
<th>amp (K)</th>
<th>width (MHz)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>78.1</td>
<td>37.4</td>
<td>0.53</td>
<td>18.7</td>
<td>51-99 No bias correction</td>
</tr>
<tr>
<td>78.5</td>
<td>37.0</td>
<td>0.55</td>
<td>18.8</td>
<td>51-99 With bias correction</td>
</tr>
<tr>
<td>78.5</td>
<td>37.0</td>
<td>0.55</td>
<td>18.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 lowband1 data 2016_250 - 2017_095

The effect in this case is very small. Another test is made using simulated data in which the length of the data in each switch cycle is changed between the calibration and the data taken in the field. This might be the case if there is an increase in FFT processing efficiency so that more data is processed in a switching cycle without speeding up the switching cycle. Not speeding up the switching period is desirable due to the dependence of the limited lifetime of the mechanical switch on the number of cycles.

A simulation is made in which \(c = 2.5 \times 10^{-5} \) for calibration is dropped to \(c = 2.5 \times 10^{-4} \) for the data. The result is a 33 mK residual with correction shown in Figure 1 compared with 55 mK residual (1 term removed) without correction shown in Figure 2. Figure 2 shows a clear systematic in addition to the noise for the 24 hour integration.
Figure 1. Simulated data with bias correction.
Figure 2. Without bias correction.