STORM TIME EFFECTS ON THE LOW- TO MID-LATITUDE IONOSPHERE: PENETRATION ELECTRIC FIELDS

J.D. Huba
Plasma Physics Division
Naval Research Laboratory
Washington, DC

G. Joyce and M. Swisdak
Icarus Research, Inc.
Bethesda, MD

S. Sazykin, R. Wolf and R. Spiro
Rice University
Houston, TX

Millstone Hill Workshop
8 November 2005
How do penetration electric fields evolve in the low- to mid-latitude ionosphere as a function of longitude and latitude during geomagnetic storms?

What is the response of the ionosphere to penetrating electric fields as a function geophysical parameters (e.g., geomagnetic conditions, solar EUV, longitude, latitude, etc.)?

The first self-consistent study of the impact of storm-time penetration electric fields on the low- to mid-latitude ionosphere

Based on an electrodynamically coupled inner magnetosphere model (RCM) and an ionosphere model (SAMI3)
OVERVIEW OF SAMI3

- Magnetic field: Offset, tilted dipole model / IGRF-like
- Interhemispheric / Global
- Nonorthogonal, nonuniform fixed grid
- Seven (7) ion species (all ions are equal): $\text{H}^+, \text{He}^+, \text{N}^+, \text{O}^+, \text{N}_2^+, \text{NO}^+$, and O_2^+
 - Solve continuity and momentum for all 7 species
 - Solve temperature for H^+, He^+, O^+, and e⁻
- Plasma motion
 - $\mathbf{E} \times \mathbf{B}$ drift perpendicular to \mathbf{B}
 (both vertical and longitudinal in SAMI3)
 - Ion inertia included parallel to \mathbf{B}
- Neutral species: NRLMSISE00 and HWM93
- Chemistry: 21 reactions + recombination
- Photoionization: Daytime and nighttime
The fundamental coupling of RCM and SAMI3 is through the solution of the potential equation

$$\nabla \cdot \sum_{\text{SAMI3}} \cdot \nabla \Phi = J ||$$

→ SAMI3 provides the ionospheric conductance to RCM
→ RCM solves the potential equation to determine Φ
→ RCM provides the Φ to SAMI3
→ SAMI3 and RCM use Φ to calculate the electric field
→ Transport the plasma

The coupled model provides a self-consistent electrodynamical description of the ionosphere/inner magnetosphere system
Codes cover different spatial regions
 - RCM covers $-72^\circ < \theta < -10^\circ$ and $72^\circ > \theta > 10^\circ$ (green and blue regions)
 - SAMI3 covers $\pm 60^\circ$ (green and yellow regions)
- RCM uses IRI for latitudes above 60° and a fitting algorithm to match to SAMI3 (blue)
- SAMI3 assumes the potential is latitudinally independent below 10° (yellow)
Codes use different grids and we must interpolate data (Φ and Σ) from one grid to the other
→ We set up a uniform, intermediate grid that we interpolate data to in order to pass data between RCM and SAMI3

RCM uses a fixed time step while SAMI3 uses a variable time step (in general) – fortunately, both codes use similar time steps
→ We run both codes on the same time step (\(dt = 2\) sec)

An MPI version of SAMI3 has been developed to run on a Linux cluster (e.g., 16 node dual processor Opteron and Xeon systems) but RCM is not parallelized
→ Coupled code runs \(\sim 1.5\) real time
STORM TIME MODEL

Time dependent polar cap potential used in RCM

[Graph showing polar cap potential over time with cases labeled Case 0, Case 1, and Case 2.]
RESULTS

TEC and TEC differential
RESULTS

$E \times B$ drift velocity

Graphs:
- **Longitude: 0°**
 - Altitude: 598 km
- **Longitude: 180°**
 - Altitude: 598 km

Case 0: solid
Case 1: ◆
Case 2: □

100 UT
Altitude: 598 km

230 UT
Altitude: 598 km

Axes:
- Vertical $E \times B$ velocity (m/s)
- Time (UT)
- Time (MLT)
Coupled RCM/SAMI3 model developed: idealize storm-model study

Penetration field modifies low- to mid-latitude ionosphere

Upward drift enhanced daytime
 Downward drift enhanced nighttime
 - TEC changes by ±35%
 - NmF2 changes by ±20%
 - HmF2 changes by 15% (raised by ~ 100 km)
 - $E \times B$ drift velocity can increase by a factor of 2

Enhanced 'fountain effect' and increased TEC in afternoon, mid-latitude ionosphere: qualitatively consistent with observations

Time dependence of polar cap potential important

SAMI3 has been upgraded: single global ionosphere model