Highlights of the Cassini Mission to Saturn from the Radio Science Team

> Richard French, Cassini Radio Science Team Leader NEROC – November 16, 2018

Optimized tour for occultations, gravity, bistatic observations

Nature 425, 374 (2003) - 1067 citations and counting!

Test of General Relativity during Cassini's 2002 Superior Conjunction

B. Bertotti¹, L. less², <u>P. Tortora³</u>,

¹ Università di Pavia, Italy

² Università di Roma "la Sapienza", Italy

³ Università di Bologna, Italy

"Moonlighting Satellite Vindicates Einstein" Science

Results and Conclusions

$$\gamma = 1 + (2.1 \pm 2.3) \times 10^{-5}$$

- An improvement of a factor of **50** over previous experimental estimates
- Our result approaches a sensitivity at which, theoretically, deviations from General Relativity are expected. No detailed theory is available about the expected amounts of these violations, but $\gamma - 1$ should be negative and, possibly, in the range $10^{-5} - 10^{-7}$
- The Cassini result is still the strongest limit on γ
- GAIA and BepiColombo should reach a level of accuracy of 2×10⁻⁶

Using Cassini to search for Gravitational Waves (40 days and 40 nights...)

 HF (~10-1000 Hz): laser interferometers (e.g. LIGO) • LF (~10⁻⁶ to 0.1 Hz): Cassini Doppler tracking (LISA in the future) • VLF (~10⁻⁹ to 10⁻⁶ Hz): pulsar timing • ELF (~10⁻¹⁸ - 10⁻¹⁵ Hz): CMB intensity and polarization

<u>*http://cajagwr.caltech.edu/scripts participating_projects.html</u> illustration credits: NSF/NASA/JPL/DASI

Cassini GW Limits in Context

Cassini Ring Occultations

Radio Science Team

+ Radio Science Operations Team

Typical Ring Occultation Track Geometry (15 m tick-marks)

The Coherent (Direct) & Scattered Signals

Cassini RSS

Observables

Direct (Coherent) & Scattered signals

Periodic microstructure in the rings Thomson et al. 2007, GRL 34, L24203

Cassini Division

17

Generation of standing wave: Co-addition of leading/trailing prograde density waves

Leading Trailing Standing

on (Marouf et al. 2011)

/Users/rfrench/Desktop/Cringwayes/programs/BSS_Cring_fit_lsg_v2.ps

Adapted from D. Wait 05/07/04

(a) T31 ingress, 74.3 S T27 ingress, 69.0 S T46 ingress, 32.4 S Strong seasonal cooling Altitude (km) In Titan's stratosphere From Cassini radio occultations T14 ingress, 34.2 S Temperature (K) (b) T27 egress, 52.9 N T57 ingress, 79.8 N Altitude (km) T31 egress, 74.1 N Schinder et al. 2012 T14 ingress, 34.2 S Icarus 221, 1020-1031

Temperature (K)

Cassini Radio Occultation Soundings: Saturn's Equator

(Schinder *et al.* 2011)

Cassini Titan Ionosphere

Figure 2. Surface plot of log₁₀ electron density versus altitude and latitude derived from all Cassini RSS Saturn occultation data (approximately 60,000 data points). The upper plot is a 3-D representation of electron density, and the lower graphic is the corresponding contour plot.

Probing the composition of Titan's seas

Detecting radio reflections from Titan's Northern Seas

Detecting reflections from Titan's Northern Seas

Titan Tides and Rotation

Albedo map with gravity flybys

Longitude (increasing westward)

Cassini gravity field measurements of Titan reveal liquid ocean

Icy Satellites Gravity Science

Saturn icy satellite	Estimated GM (km³/s⁵)	J ₂ (x10 ⁶)	C ₂₁ (x10 ⁶)	S ₂₁ (x10 ⁶)	C ₂₂ (x10 ⁶)	S ₂₂ (x10 ⁶)	J ₂ /C ₂₂	J ₃ (x10 ⁶)	
Phoebe	0.5517 ± 0.0007	-	-	_	_	-	_	-	
lapetus	120.2064 ± 0.0631	-	-	_	_	-	_	-	
Hyperion	0.375 ± 0.003	-	-	-	-	-	-	-	
Dione	73.11646 ± 0.00050	1453.6 ± 16.2	-	_	363.1 ± 2.0	-17.0 ± 1.9	4.00 ± 0.06	-	
Rhea	153.9416± 0.0049	946.0 ± 13.9	-19.9 ± 11.0	23.5 ± 21.3	242.1 ± 4.0	-15.3 ± 5.0	3.91 ± 0.10	-	
Enceladus	7.2096 ±0.0067	5435.2 ± 34.9	9.2±11.6	39.8 ± 22.4	1549.8±15.6	22.6 ± 7.4	3.51 ± 0.05	-115.3 ± 22.9	
						Not in hydrostatic equilibrium (10/3)			

Enceladus – what we know from Cassini

- Cassini carried out gravity measurements of Enceladus in 2010-2012 during **three close flybys**: E9 (Apr '10), E12 (Nov. '10) and E19 (May '12)
- Analysis of Radio Tracking (Doppler) data provided the first estimation of the full degree-2 gravity field (+J₃), (*less et al., 2014*), giving evidence of a subsurface ocean under the icy crust, near the South pole
- More recently, the analysis of Cassini images provided a measurement of a large physical libration of Enceladus, direct evidence of a global ocean under the icy crust (Thomas et al. 2016)

The Grand Finale! The first plunge began on April 23, 2016

Ring occultations during the Grand Finale – up close and personal!

Φ

Saturn gravity during Grand Finale: Depth of winds and differential rotation Mass of Saturn's rings Comparison with Jupiter

The RSS Operations Team at T119

Cassini's final wave home

Background material

Radio Science Operations

- The most operationally complex and challenging Radio Science experiments ever conducted
 - Multiple frequency bands
 - Complicated configuration
 - Demanding ground pointing requirements in particular, at Ka-band
 - Real-time intervention
 - Long duration extending for over 30 hours late in the mission
 - Ground coverage by several antennas over multiple DSN complexes
- All 70-m and 34-m DSN antennas were utilized to support RS experiments
 - ESA's Malargue and New Norcia antennas were utilized during the last phase of the mission
- In total, there were 1095 radio science events including all science experiments, engineering activities and diagnostic tracks, and these were covered by 1691 individual ground tracks
- ~ 9 TB of Radio Science engineering and science open- and closed-loop data were collected during Tour
- The Radio Science Instrument (both spacecraft and ground) performed above and beyond expectations

Ionospheric Results from RSS

Saturn:

- 65 vertical dawn/dusk ionospheric electron density profiles
- latitude range from the equator to about 72° latitude.
- The mean peak electron densities a few times 10⁵ cm⁻³ and in general increased with latitude.
- This is believed to be the result of rapid recombination of H⁺ with neutral molecules (e. g. methane, water), as well as possible increases in ionization rates.
- The mean altitude of the density peak is around 2200 km, also increasing with latitude.
- In situ measurements during the proximate orbits allowed a comparison with direct measurements and it it showed very good agreement.

Titan:

- 24 vertical electron density profiles
- The "normal" mean electron density peak was found to be 1-2x10³ cm⁻³.
- Sometimes was over 3x10³ cm⁻³attributed to electron precipitation.
- The altitude of the peak density was around 1200 km.
- Unexpected large secondary electron peak was observed to be present on a few occasions near 500 km, which is likely due to intermittent ion precipitation.

