Quantifying Radiation Belt Electron Precipitation And Its Effect on Atmospheric Chemistry

<u>Chia-Lin Huang</u>¹, Harlan E. Spence¹, Katharine Duderstadt¹, Sonya Smith¹, Alex Boyd², Geoff Reeves², J Bernard Blake³, J. F. Fennell³, Seth Claudepierre³, Drew Turner³, Alex Crew⁴, David M Klumpar⁵, Mykhaylo Shumko⁵, Arlo Johnson⁵ and John Sample⁵

¹University of New Hampshire, ²Los Alamos National Laboratory, ³Aerospace Corporation, ⁴Applied Physics Laboratory, ⁵Montana State University

Energetic Particle Precipitation into the Atmosphere

- "Missing source" of NOx in global climate models at 70 km (Randall et al., 2015)
- Do radiation belt electrons provide this missing source?
- <u>Goal</u>: Estimate the precipitation flux and energy spectrum of radiation belt electrons and quantify the contribution of electron precipitation to atmospheric chemistry

NSF FIREBIRD

High time resolution at critical energies in the loss cone at low Earth orbit

NASA Van Allen Probes (RBSP)

Continuous coverage in the radiation belt near equator

Chia-Lin Huang 3

Efforts to Determine Electron Precipitation

	<u>SAMPEX</u>	POES	FIREBIRD	Van Allen Probes
Altitude	~600 km	870 km	400 - 600 km	700 km to ~6 Re
<u>Inclination</u> (degree)	82	98.7	82	10
<u>Energies</u>	~ MeVs	> 30 keV > 100 keV > 300 keV	265 keV 354 keV 481 keV 663 keV 913 keV > 1 MeV	10s keV to MeVs (MagEIS)
<u>Challenges</u>	High energies	Proton contamination & sensitivity limit	Sparse	Equatorial "near" loss cone

Compare FIREBIRD & Van Allen Probes at Conjunctions

- To quantify poorly known global radiation belt precipitation
- 35 quality conjunctions from 14 FIREBIRD campaigns
- Calculate flux ratio between precipitated and trapped electrons
- Scaled Van Allen Probes data to provide more global, more continuous time series of precipitation

Flux Ratio as Function of Energy - All

Flux Ratio as Function of Energy - in percentile

- Electron flux ratios in 50 and 100 percentile
- Average precipitation rate is ~1% across energies
- Strongest precipitation rate is ~90% at 900 keV
- Use 100 percentile flux ratio to simulate atmospheric impact
- Note: Throughout the 35 conjunction events, the Dst minimum > -50 nT (moderate condition)

Select Electron Loss Event Using Total Radiation Belt Electron Content

Electron Long-Quiet Decay Event

2013 March 4-14

Little or no magnetopause shadowing loss

Electron Long-Quiet Decay Event

2013 March 4-14

Use MagEIS electron flux and scaled with flux ratio to simulate RBE impact on atmosphere

Atmospheric Ionization Rate of Electron Precipitation

120 Calculate ion pair 100 production rates using Altitude (km) Fang et al. (2010) 80 parameterization 60 40 Comparable to solar 100 percentile 20 energetic proton rate at of REP 70km 0 Maro Mara Maro Mar 0.001 80 0.01 Pressure (hPa) 0.1 -1 -10 -30 solar protons 20 100 3/1/13 5/1/13 4/1/13 cm⁻³ s⁻¹ 1 10 100 1000 10000

Atmospheric Ionization Rate of Electron Precipitation

Atmospheric Impact from RB Electron Precipitation

- Whole Atmosphere Community Climate Model (WACCM)
- Northern hemisphere polar vortex-averaged NO_x enhancement (~100%) and O₃ reduction (~20%) compared to simulations without radiation belt electron input

Summary

- We estimated radiation belt electron precipitation using FIREBIRD and Van Allen Probes
- We quantified the contribution of electron precipitation to atmospheric chemistry
- We found a substantial change in atmosphere with moderate electron precipitation inputs

Future Work

- Use more extreme electron precipitation to simulate its atmospheric influence and compare results with satellite observation
- Calculate the ionospheric conductance caused by radiation belt electrons using TIE-GCM and WACCM-X
- Compare precipitation measurements from other satellites, radar, and riometer

