
Topics in FS station software coding

May 2019 TOW

Ed Himwich, GSFC/NVI

This seminar is intended to be driven by requests from the attendees. As a result, there are
no advance notes. Room is left on this page for attendees to make some of their own notes.
We intend to provide a write-up of what was covered in the web version of the notes after
the meeting. The pages from the write-ups from previous TOW for “Writing Station
Specific FS Code” seminars follow, for reference use. Old, but still relevant block diagrams
of FS program interaction follow the “Code: Basic” section. At the end of this document
is a copy of a presentation from TOW 2015 about how cable-wrap works and interacts with
scheduling, it is recommended reading for stations implementing antcn for Az/El
antennas.

Notes:

Code: Basic

May 2019 TOW

Ed Himwich, NVI/GSFC

1. Overview of FS Architecture

1.1. Diagrams from FS manual, attached at end of write-up

1.1.1. Initialization
1.1.2. Normal Execution
1.1.3. Pointing Programs
1.1.4. Module Checking
1.1.5. Data logging

1.2. Only ddout writes to disk
1.3. Except for boss reading the schedule and procedures, there is no disk

reading except during initialization (one exception, the save_file
SNAP command).

2. Control Files for Station Coding

2.1. stpgm.ctl

2.1.1. Defines station programs to run and stop at FS start and stop
2.1.2. Trailing ampersand & means it is run in background
2.1.3. No ampersand & means wait for return before proceeding
2.1.4. Programs

2.1.4.1. Most stations only have a subset
2.1.4.2.stcom

2.1.4.2.1. Initializes station shared memory
2.1.4.2.2. Reads some control files
2.1.4.2.3. Listed first in control file, so runs first
2.1.4.2.4. Used with no ampersand to “wait”

2.1.4.3. Other programs are run in background, with ampersand
2.1.4.3.1. stqkr station SNAP commands
2.1.4.3.2. antcn antenna interface
2.1.4.3.3. cheks station module checking
2.1.4.3.4. sterp station error reporting

2.2. sterr.ctl

2.2.1. Station program error messages.
2.2.2. See Error Messages in Code: Intermediate write-up for more

details

2.3. stcmd.ctl
2.3.1. Station SNAP commands access control

2.4. mdlpo.ctl

2.4.1. Pointing model file, usually read by antcn

3. Resource allocation

3.1. For FS internals this is done by fsalloc: shared memory, semaphores,

and message queue
3.2. For station software this can be done with sample stalloc. Example

provides only shared memory: C and two areas of FORTRAN shared
memory

4. Emulation Services

4.1. Class I/O passes binary buffers between programs
4.2. Scheduling allows programs to pass control back and forth between

“parent” and “child” processes
4.3. Resource numbers or semaphores allows coordinated access to resources
4.4. “Break” allows a signal to be sent to program, using brk program, to

initiate some special action, usually aborting some behavior
4.5. Suspending and Resuming - Allows a program to suspend execution until

some other action is taken, usually by the operator who must tell the
program to resume again, with the go program.

4.6. Shared memory, straightforward in C, complicated in FORTRAN because
there is no direct support

5. More Information

5.1. Code Intermediate and Advanced Code write-ups
5.2. End of Volume 2 of the FS Manuals has several relevant sections but

some out of date
5.3. See examples of use in FS code

6. antcn

6.1. Must be coded to not cause delays, no action should take more than a
second

6.2. If antenna communication fails because it needs to re-initialized, e.g., open
a new socket, after the antenna is restarted, antcn should be coded to
handle that automatically without having to restart the FS to rerun mode 0

6.3. Modes
0 initialization
1 new source
2 new offsets
3 check onsource status, with error logging
4 antenna= command
5 onsource with no error logging
6 reserved for focus control
7 onsource with additional information
8 station specific detectors, see

 /usr2/fs/misc/stndet.txt
9 Satellite tracking, see

/usr2/fs/misc/satellites.txt
10 Termination mode, for antenna clean-up on FS

termination, must return promptly
11-99 Reserved for future use
100-32767 Reserved for station use

6.5. Example antcn

/* antcn

6.6. This is the antcn (ANTenna CoNtrol program) for Tsukuba 32.
*/

#define MINMODE 0
#define MAXMODE 8
#define MDLPO "/usr2/control/mdlpo.ctl"

#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../../fs/include/dpi.h"
#include "../../fs/include/fs_types.h"
#include "../../fs/include/shm_addr.h" /* shared memory pointer */
#include "../../fs/include/params.h"
#include "../../fs/include/fscom.h"
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h" /* shared memory pointer */

struct stcom *st;
struct fscom *fs;

void st_setup(), st_command(), st_onsource(), st_antenna();
void setup_ids(), setup_st();
void putpname();
int gmodl();
void corrq(), equn(), tracq(), pmdlq();
void skd_run(), cls_clr();
int nsem_test();
void logit();
long idum[] = {0,0,0,0,0};
long cls_alc();

main()
{
 int ierr;
 int imode;
 long ip[5];
 int iy,id;
 double eqofeq;
 char idev[64],oldlog[8]; /* test */
 char buf [80];
 int imem; /* test */
 int nrec, nrecr;
 long class, classr;
 int i;

/* Set up IDs for shared memory, then assign the pointer to
 "fs", for readability.
 */
 setup_ids();
 fs = shm_addr;
 setup_st();
 st = stm_addr;

/* Put our program name where logit can find it. */

 putpname("antcn");

/* allocate class box for message from trakl */

 if(-1 == (stm_addr->antbox=cls_alc())) {
 fprintf(stderr," antbox allocation failed\n");
 exit(-1);
 }

/* Return to this point to wait until we are called again */

Continue:
 skd_wait("antcn",ip,(unsigned)0);

 imode = ip[0];
 class = ip[1];
 nrec = ip[2];
 nrecr = 0;
 classr = 0;
 if (imode < MINMODE || imode > MAXMODE) {
 ierr = -1;
 goto End;
 }

 switch (imode) {

 case 0: /* initialize */
 ierr = 0;
 if (gmodl(MDLPO,&st->pmodel) < 0) {
 ierr = -6;
 goto End;
 }
 st_setup();
 skd_run("trakl",'n',idum);
 break;
 case 1: /* source= command */
 case 2: /* offsets */
 if (nsem_test("trakl") != 1) {
 logit(NULLPTR,-8,"an");
 goto End;
 }
 if (memcmp(st->point.oldlog,fs->LLOG,sizeof(st->point.oldlog))!=0)
 pmdlq(&st->pmodel); /* log the model */
 st_command(imode);
 fs->ionsor=0;
 break;

 case 4: /* direct antenna= command */
 if (class == 0)
 goto End;
 if (nsem_test("trakl") != 1) {
 logit(NULLPTR,-8,"an");
 cls_clr(class);
 goto End;
 }
 st_antenna(class,nrec,&classr,&nrecr,&ierr);
 break;

 case 6: /* reserved */
 ierr = -1;
 goto End;

 case 3: /* onsource command with error message */
 case 5: /* onsource command with no error logging */
 case 7: /* onsource command with additional info */
 if (nsem_test("trakl") != 1) {
 logit(NULLPTR,-8,"an");
 goto End;
 }
 st_onsource();
 if (st->error.konsor)
 fs->ionsor=1;
 else {
 fs->ionsor=0;
 if (imode == 3 && st->point.itype < 5)

 logit(NULLPTR,-103,"an");
 }
 if (imode == 7) {
 tracq(&st->pos_old,&st->ercr_old);
 iy = st->pos_old.t[5] - 1900;
 id = st->pos_old.t[4];
 equn(iy,id,&eqofeq);
 corrq(&st->ercr_old,eqofeq);
 }

 break;
 case 8:
 if(strncmp(shm_addr->user_dev1_name," ",2)!=0) {
 char *meter;
 for (i=0;i<5;i++)
 ip[i]=0;
 if(strncmp(shm_addr->user_dev1_name,"u5",2)==0) {
 meter="p2";
 ib_req2(ip,meter,"AP");
 } else if(strncmp(shm_addr->user_dev1_name,"u6",2)==0) {
 meter="p1";
 ib_req2(ip,meter,"AP");
 }
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2]<0)
 goto Continue;
 }
 if(strncmp(shm_addr->user_dev2_name," ",2)!=0) {
 char *meter;
 for (i=0;i<5;i++)
 ip[i]=0;
 if(strncmp(shm_addr->user_dev2_name,"u5",2)==0) {
 meter="p2";
 ib_req2(ip,meter,"AP");
 } else if(strncmp(shm_addr->user_dev2_name,"u6",2)==0) {
 meter="p1";
 ib_req2(ip,meter,"AP");
 }
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2]<0)
 goto Continue;
 }
 rte_sleep(100);
 if(strncmp(shm_addr->user_dev1_name," ",2)!=0) {
 char *meter;
 for (i=0;i<5;i++)
 ip[i]=0;
 if(strncmp(shm_addr->user_dev1_name,"u5",2)==0) {
 meter="p2";
 ib_req5(ip,meter,20);
 } else if(strncmp(shm_addr->user_dev1_name,"u6",2)==0) {
 meter="p1";
 ib_req5(ip,meter,20);
 }
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2]<0)
 goto Continue;

 i=20;
 ib_res_ascii(buf,&i,ip);
 {
 float pwr;
 sscanf(buf,"%f",&pwr);
 shm_addr->user_dev1_value=pwr*1e6;
 }
 }
 if(strncmp(shm_addr->user_dev2_name," ",2)!=0) {
 char *meter;

 for (i=0;i<5;i++)
 ip[i]=0;
 if(strncmp(shm_addr->user_dev2_name,"u5",2)==0) {
 meter="p2";
 ib_req5(ip,meter,20);
 } else if(strncmp(shm_addr->user_dev2_name,"u6",2)==0) {
 meter="p1";
 ib_req5(ip,meter,20);
 }
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2]<0)
 goto Continue;

 i=20;
 ib_res_ascii(buf,&i,ip);
 {
 float pwr;
 sscanf(buf,"%f",&pwr);
 shm_addr->user_dev2_value=pwr*1e6;
 }
 }
 break;
 default:
 ierr = -1;
 } /* end of switch */

End:
 ip[0] = classr;
 ip[1] = nrecr;
 ip[2] = ierr;
 memcpy(ip+3,"an",2);

 ip[4] = 0;
 goto Continue;

}

Code: Intermediate

May 2019 TOW

Ed Himwich, NVI/GSFC

1. Connecting to FS resources

1.1. Necessary for FS libraries and utilities to work
1.2. The first thing a program should do is

1.2.1. In C:
1.2.1.1. Use setup_ids()
Call this routine only once per program execution, do not call for
every program scheduling (as opposed to program execution, see
section 2. below), do not call in a loop and do not call in each
subroutine. Calling more than once per execution should be
benign, but apparently there is a memory leak in kernel support for
shared memory.

1.2.2. In FORTRAN:

1.2.2.1. call setup_fscom
Call this routine only once per program execution, do not call for
every program schedule (as opposed to program execution, see
section 2. below), do not call in a loop and do not call in each
subroutine. Calling more than once per execution should be
benign, but apparently there is a memory leak in kernel support for
shared memory.

1.2.2.2. call read_fscom
1.2.2.3. When waking up must call read_quikr to refresh

fscom_quik

2. Program Scheduling

2.1. This is a form of inter-program communication. It is used pass control

from “parent” to “child” programs. The “child” programs do not
terminate, but can return control to “parent”, also known as “co-routines.”
The “child” can also run asynchronously. Most FS programs run
persistently rather than starting and stopping as normal UNIX programs
would.

2.2. Flow
2.2.1. All programs initialize by connecting to FS resources (see above)
2.2.2. Most wait to be scheduled, skd_wait().

2.3. In C:

2.3.1. skd_run() schedule a program with run parameters
2.3.2. skd_par() retrieve run parameters from a returning

child
2.3.3. skd_run_arg() schedule program with an ASCII string
2.3.4. skd_wait() wait for someone to schedule me with

optional time-out and return run parameters
2.3.5. skd_arg() retrieve n-th ASCII blank delimited

argument from father
2.3.6. skd_chk() check whether I’ve been scheduled
2.3.7. skd_end() wake up my father if I have one, send run

parameters
2.3.8. dad_pid() get my father’s pid, 0 if no father

2.4. In FORTRAN:

2.4.1. run_prog() accesses skd_run
2.4.2. wait_prog() skd_wait with no time-out
2.4.3. wait_abst() skd_wait with time-out at absolute time
2.4.4. wait_abstd() skd_wait with time-out at absolute time

including day of year
2.4.5. wait_relt() skd_wait with relative wait time
2.4.6. get_arg() skd_arg
2.4.7. rmpar() skd_par

3. Error handling and class buffer exchange

3.1. Structured around long (integer*4) five element interprogram

communication array
3.1.1. First Element - class number holding messages
3.1.2. Second - number of class records
3.1.3. Third - Error number if non-zero
3.1.4. Fourth - first two characters of error type
3.1.5. Fifth - first two characters of additional error type or

additional binary information
3.2. Errors are detected at the lowest level and the routines and process return

until the highest-level routine, usually boss or chekr logs the error
3.3. Asynchronous - errors exist without context, this has good and bad points
3.4. If there is an error don’t leave data in class numbers, unless you want it

logged, it is ASCII and boss is the top-level scheduler.
3.5. Normal path

3.5.1. boss passes command to quikr in a class buffer with save bits
on

3.5.2. quikr parses command, generates class message for matcn

3.5.3. matcn processes buffers, generating responses which go into class
buffers, and or an error

3.5.4. quikr parses response from matcn and generates log entries in
class buffers and sends them or matcn errors to boss

3.5.5. boss accepts log entries or errors and sends them to the log entry
system, an error automatically removes a command for time list

4. Setting up station help pages and error messages

4.1 Text files go in /usr2/st/help and are in the form xxx.___ (three
 underscores), where xxx corresponds to the xxx used in help=xxx,
could be a command name or other token

4.1. Error messages go in /usr2/control/sterr.ctl, compare to
/usr2/fs/control/fserr.ctl

4.2. Three lines per error message, where XX is the two-letter error mnemonic
(in caps), nnn is the numeric error:

""
XX -nnn
message

5. Station SNAP Commands

5.1. Linked to the station specific stqkr program
5.2. See example code in /usr2/fs/st.default/st-0.0.0./stqkr
5.3. FORTRAN should be avoided
5.4. Selection of code in stqkr for each command is determined by values in

stcmd.ctl file
5.5. Coding of sample C based SNAP VLBA rack command bbcnn in

/usr2/fs/quikv/bbc.c provides an example of how to implement

5.6. stqkr example

stqkr.c

/* stqkr - C version of station command controller
 */
#include <string.h>
#include <stdio.h>
#include <sys/types.h>

#include "../../fs/include/fs_types.h"
#include "../../fs/include/shm_addr.h" /* shared memory pointer */
#include "../../fs/include/params.h"
#include "../../fs/include/fscom.h"
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h" /* shared memory pointer */

struct stcom *st;
struct fscom *fs;

#define MAX_BUF 257

main()
{
 long ip[5];
 int isub,itask,idum,ierr,nchars,i;
 char buf[MAX_BUF];
 struct cmd_ds command;
 int cls_rcv(), cmd_parse();
 void skd_wait();

/* Set up IDs for shared memory, then assign the pointer to
 "fs", for readability.
*/
 setup_ids();
 fs = shm_addr;
 setup_st();
 st = stm_addr;

loop:
 skd_wait("stqkr",ip,(unsigned) 0);
 if(ip[0]==0) {
 ierr=-1;
 goto error;
 }
 ierr=0;

 nchars=cls_rcv(ip[0],buf,MAX_BUF,&idum,&idum,0,0);
 if(nchars==MAX_BUF && buf[nchars-1] != '\0') { /*does it fit?*/
 ierr=-2;
 goto error;
 }
 /* null terminate to be sure */
 if(nchars < MAX_BUF && buf[nchars-1] != '\0') buf[nchars]='\0';

 if(0 != (ierr = cmd_parse(buf,&command))) { /* parse it */
 ierr=-3;
 goto error;
 }

 isub = ip[1]/100;
 itask = ip[1] - 100*isub;

 switch (isub) {
 case 1:
/* antenna echo function */
 ierr=0;
 aecho(&command,ip);
 break;

 case 2:
/* WX function */
 ierr=0;
 wx(&command,ip);
 break;

 case 3:
/* IF Attenuator function */
 ierr=0;
 ifatt(&command,itask,ip);
 break;

 default:
 ierr=-4;
 goto error;
 }
 goto loop;

error:
 for (i=0;i<5;i++) ip[i]=0;
 ip[2]=ierr;
 memcpy(ip+3,"st",2);
 goto loop;
}

	

ifatt.c

/* Tsukuba if att snap command */

#include <stdio.h>
#include <string.h>
#include <sys/types.h>

#include "../../fs/include/params.h"
#include "../../fs/include/fs_types.h"
#include "../../fs/include/fscom.h" /* shared memory definition */
#include "../../fs/include/shm_addr.h" /* shared memory pointer */
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h"

void ifatt(command,itask,ip)
struct cmd_ds *command; /* parsed command structure */
int itask;
long ip[5]; /* ipc parameters */
{
 int ilast, ierr, ichold, i, count, type;
 char *ptr;
 struct ifatt_cmd lcl;

 char *arg_next();

 void ifatt_dis();

 void skd_run(), skd_par(); /* program scheduling utilities */

 ichold= -99; /* check vlaue holder */

 ip[0]=ip[1]=0;

 if (command->equal != '=') { /* read module */
 ifatt_req_q(ip);
 goto k4con;
 }
 else if (command->argv[0]==NULL) goto parse; /* simple equals */
 else if (command->argv[1]==NULL) /* special cases */
 if (*command->argv[0]=='?') {
 ifatt_dis(command,itask,ip);
 return;
 }

/* if we get this far it is a set-up command so parse it */

parse:
 ilast=0; /* last argv examined */
 memcpy(&lcl,&stm_addr->ifatt,sizeof(lcl));

 count=1;
 while(count>= 0) {
 ptr=arg_next(command,&ilast);
 ierr=ifatt_dec(&lcl,&count, ptr);
 if(ierr !=0) goto error;
 }

/* all parameters parsed okay, update common */
 /*
 ichold=shm_addr->check.k4rec.check;
 shm_addr->check.k4rec.check=0;
 */
 memcpy(&stm_addr->ifatt,&lcl,sizeof(lcl));

/* format buffers for k4con */

 ifatt_req_c(ip,&lcl);

k4con:
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 /*
 if (ichold != -99) {
 shm_addr->check.k4rec.state=TRUE;
 if (ichold >= 0)
 ichold=ichold % 1000 + 1;
 shm_addr->check.k4rec.check=ichold;
 }
 */
 if(ip[2]<0) {
 cls_clr(ip[0]);
 ip[0]=ip[1]=0;
 return;
 }

 ifatt_dis(command,itask,ip);
 return;

error:
 ip[0]=0;
 ip[1]=0;
 ip[2]=ierr;
 memcpy(ip+3,"st",2);
 return;
}

	

ifatt_dis.c

/* Tsukuba if att display */

#include <stdio.h>
#include <string.h>
#include <sys/types.h>

#include "../../fs/include/params.h"
#include "../../fs/include/fs_types.h"
#include "../../fs/include/fscom.h"
#include "../../fs/include/shm_addr.h"
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h"

#define MAX_OUT 256

void ifatt_dis(command,itask,ip)
struct cmd_ds *command;
int itask;
long ip[5];
{
 struct ifatt_cmd lclc;
 int kcom, i, ierr, count;
 char output[MAX_OUT];

 kcom= command->argv[0] != NULL &&
 *command->argv[0] == '?' && command->argv[1] == NULL;

 if ((!kcom) && command->equal == '=') {
 if(ip[0]!=0) {
 cls_clr(ip[0]);
 ip[0]=0;
 }
 ip[1]=0;
 return;
 } else if (kcom){
 memcpy(&lclc,&stm_addr->ifatt,sizeof(lclc));
 } else {
 ifatt_res_q(&lclc,ip);
 if(ip[1]!=0) {
 cls_clr(ip[0]);
 ip[0]=ip[1]=0;
 }
 if(ip[2]!=0) {
 ierr=ip[2];
 goto error;
 }
 }

 /* format output buffer */

 strcpy(output,command->name);
 strcat(output,"/");

 count=0;
 while(count>= 0) {
 if (count > 0) strcat(output,",");
 count++;
 ifatt_enc(output,&count,&lclc);
 }
 if(strlen(output)>0) output[strlen(output)-1]='\0';

 for (i=0;i<5;i++) ip[i]=0;
 cls_snd(&ip[0],output,strlen(output),0,0);
 ip[1]=1;

 return;

 error:
 ip[0]=0;
 ip[1]=0;
 ip[2]=ierr;
 memcpy(ip+3,"ki",2);
 return;
}

	

ifatt_util.c

/* Tsukuba IF ATT buffer parsing utilities */

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <limits.h>
#include <math.h>

#include "../../fs/include/macro.h"
#include "../../fs/include/params.h"
#include "../../fs/include/fs_types.h"
#include "../../fs/include/fscom.h" /* shared memory definition */
#include "../../fs/include/shm_addr.h" /* shared memory pointer */
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h"

static char device[]={"if"}; /* device menemonics */

#define MAX_BUF 512

int ifatt_dec(lcl,count,ptr)
struct ifatt_cmd *lcl;
int *count;
char *ptr;
{
 int ierr, arg_int();

 ierr=0;
 if(ptr == NULL) ptr="";

 if (*count >0 && *count <5) {
 ierr=arg_int(ptr,&lcl->atten[*count-1],0,FALSE);
 if(ierr==0 && (lcl->atten[*count-1]<0 || lcl->atten[*count-1]>81))
 ierr=-200;
 } else
 *count=-1;

 if(ierr!=0) ierr-=*count;
 if(*count>0) (*count)++;
 return ierr;
}

void ifatt_enc(output,count,lcl)
char *output;
int *count;
struct ifatt_cmd *lcl;
{
 int ivalue, type;

 output=output+strlen(output);

 if(*count > 0 && *count < 5) {
 sprintf(output,"%02d",lcl->atten[*count-1]);
 } else
 *count=-1;

 return;
}

ifatt_req_q(ip)
long ip[5];
{
 ib_req7(ip,device,31*2-1+2,"rout:clos? (@1(0:15),2(0:14))");

}

ifatt_req_c(ip,lclc)
long ip[5];
struct ifatt_cmd *lclc;
{
 char buffer[120];
 unsigned short word[2];
 int i;

 ib_req2(ip,device,"ROUT:DRIV:ON:ALL");

 word[0]=word[1]=0;

 for(i=0;i<4;i++) {
 int value=lclc->atten[i];
 int low,up;
 if(value<80) {
 if(value%10 <8)
 low=value%10;
 else
 low=0x8 | (value%10-4);
 up=value/10;
 } else if(value == 80){
 low=0xE;
 up=0x7;
 } else if(value == 81) {
 low=0xF;
 up=0x7;
 }
 word[0]|=low << (i*4);
 word[1]|=up << (i*4);
 }

 if(word[0]!=0xFFFF || word[1] !=0x7777) {
 strcpy(buffer,"ROUT:OPEN (@");
 if(word[0]!=0xFFFF) {
 strcat(buffer,"1(");
 for (i=0;i<16;i++)
 if((word[0] & (1<<i)) == 0)
 sprintf(buffer+strlen(buffer),"%d,",i);
 strcpy(buffer+strlen(buffer)-1,")");
 if(word[1]!=0x7777)
 strcat(buffer,",");
 }

 if(word[1]!=0x7777) {
 strcat(buffer,"2(");
 for (i=0;i<16;i++)
 if((word[1] & (1<<i)) == 0)
 sprintf(buffer+strlen(buffer),"%d,",i);
 strcpy(buffer+strlen(buffer)-1,")");
 }
 strcat(buffer,")");

 ib_req2(ip,device,buffer);
 }

 if(word[0]!=0 || word[1] !=0) {
 strcpy(buffer,"ROUT:CLOS (@");
 if(word[0]!=0) {
 strcat(buffer,"1(");
 for (i=0;i<16;i++)
 if((word[0]& (1<<i)) != 0)
 sprintf(buffer+strlen(buffer),"%d,",i);
 strcpy(buffer+strlen(buffer)-1,")");
 if(word[1]!=0)
 strcat(buffer,",");
 }

 if(word[1]!=0) {
 strcat(buffer,"2(");

 for (i=0;i<16;i++)
 if((word[1]& (1<<i)) != 0)
 sprintf(buffer+strlen(buffer),"%d,",i);
 strcpy(buffer+strlen(buffer)-1,")");
 }
 strcat(buffer,")");
 ib_req2(ip,device,buffer);
 }

}

ifatt_res_q(lclc,ip)
struct ifatt_cmd *lclc;
long ip[5];
{
 char buffer[MAX_BUF];
 int i,max;
 unsigned short word[2];

 max=sizeof(buffer);
 ib_res_ascii(buffer,&max,ip);
 if(max < 0) {
 ip[2]=-1;
 return;
 }

 word[0]=word[1]=0;

 for(i=0;i<31;i++) {
 int ibit;
 sscanf(buffer+i*2,"%d",&ibit);
 if(ibit!=0)
 word[i/16]|=1<<(i%16);
 }

 for (i=0;i<4;i++) {
 unsigned char x;
 x=(word[0]>>(i*4)) & 0xf;
 lclc->atten[i]=x &0x7;
 if((x&0x8)!=0)
 lclc->atten[i]+=4;
 x=(word[1]>>(i*4)) & 0x7;
 lclc->atten[i]+=x*10;
 }

 return;
}

	

wx.c

/* wx command
*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>

#include "../../fs/include/fs_types.h"
#include "../../fs/include/shm_addr.h" /* shared memory pointer */
#include "../../fs/include/params.h"
#include "../../fs/include/fscom.h"
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h" /* shared memory pointer */

extern struct stcom *st;
extern struct fscom *fs;

#define MAX_OUT 256

void wx(command,ip)
struct cmd_ds *command;
long ip[5];

{
 char output[MAX_OUT];
 int which,i;
 long time;

 which=stm_addr->wx.which;
 if(which <0 || 1 < which) {
 ip[2]=-96;
 goto error;
 }

 rte_rawt(&time);
 if(stm_addr->wx.time[which]< time-6001) {
 ip[2]=-95;
 goto error;
 }
 strcpy(output,command->name);
 strcat(output,"/");

 sprintf(output+strlen(output),"%.1f,%.1f,%.1f",
 stm_addr->wx.temp[which],
 stm_addr->wx.pres[which],
 stm_addr->wx.humi[which]);

 shm_addr->tempwx=stm_addr->wx.temp[which];
 shm_addr->humiwx=stm_addr->wx.humi[which];
 shm_addr->preswx=stm_addr->wx.pres[which];

 for (i=0;i<5;i++) ip[i]=0;
 cls_snd(&ip[0],output,strlen(output),0,0);
 ip[1]=1;

 return;

error:
 ip[0]=0;
 ip[1]=0;
 memcpy(ip+3,"st",2);
 return;

}

Code: Advanced

May 2019 TOW

Ed Himwich, NVI/GSFC

1. Class I/O

1.1. Emulation of HP system feature with System V messages
1.2. Class numbers are FIFO mailboxes,
1.3. In C:

1.3.1. cls_snd() send a class message
1.3.2. cls_rcv() receive a class message
1.3.3. cls_clr() clear a class number

1.4. In FORTRAN:
1.4.1. put_buf() send a class message
1.4.2. get_buf() receive a class message
1.4.3. clrcl() clear a class number

1.5. Class number word:

1.5.1. long (integer*4) variable
1.5.2. Bits Value
 31-16 zero
 15 1=no-wait
 14 1=save buffer
 13 1=save class
 12-0 class number

2. LOGIT routines

2.1. Used for reporting errors, send text to log
2.2. Not normally needed since BOSS normally logs these errors
2.3. See examples in existing code
2.4. In C:

2.4.1. putpname() insert external program name for external
messages

2.4.2. logit() ASCII message OR Error number,
mnemonic

2.4.3. logita() ASCII message OR Error number,
mnemonic, plus additional character code

2.4.4. logite() ASCII message OR Error number,
mnemonic, plus additional text for S2 errors

2.4.5. logit_nd() log information without operator display

2.5. In FORTRAN:
2.5.1. pname() Insert external program name for external

messages
2.5.2. logit2() log text message from external program
2.5.3. logit2_ch() log text message from external program

input is character variable
2.5.4. logit3() log ASCII text, used primarily by newlg.f

for logging header information
2.5.5. logit4() log ASCII message with calling procedure

name
2.5.6. logit4d() log ASCII message with date information
2.5.7. logit4_ch() log character type message
2.5.8. logit5() log the opening line of a new log
2.5.9. logit6() log error, all args except the last two are

zero.

The last two arguments are:

2.5.9.1. error integer
2.5.9.2. error mnemonic: ASCII

2.5.10. logit6c() log error, all args except the last two are zero.

The last two arguments are:

2.5.10.1. error integer
2.5.10.2. error mnemonic, character value

2.5.11. logit7() log error, all arguments except the last four are zero.

The last four arguments are:

2.5.11.1. + or -/0 for last argument is 2 characters
2.5.11.2. error number
2.5.11.3. ASCII mnemonic
2.5.11.4. last argument depends on pervious arguments, but 0 is

ignored)

2.5.12. logit7cc() same as logit7(), but last two args are
character

2.5.13. logit7ci() same as logit7(), but next to last
argument is character

2.5.14. logit7ic() same as logit7(), but last argument is

character

3. shared memory for the FS

3.1. FORTRAN

Defined in /usr2/fs/include/fscom.i, includes:

3.1.1. fscom_init.i
3.1.1.1. initialization values from sincom
3.1.1.2. set only once and is read in by read_fscom

3.1.2. fscom_quik.i
3.1.2.1. quikr defined values
3.1.2.2. may be changed every time quikr runs and needs to be

refreshed with read_quikr every time a program is
scheduled

3.1.3. fscom_dum.i

3.1.3.1. FORTRAN copy of C stored data
3.1.3.2. C data accessed by fs_set/fs_get routines in

/usr2/fs/newlb/prog.c

3.2. In C:

The shared memory area is available through the pointer

3.2.1. extern struct fscom *shm_addr;

defined in /usr2/fs/include/shm_addr.h

4. Shared memory for the station software

4.1. Example in /usr2/fs/st.default/stlib/stm_util.c

4.1.1. Needs initialization by stalloc program (analog of fsalloc)
4.2. Supports one C area and two FORTRAN areas
4.3. In C:

The shared memory area is available through the pointer

extern struct stcom *stm_addr;

defined in /usr2/fs/st.default/st-1.0.0/include/stm_addr.h

4.4. FORTRAN
4.5. Please avoid using FORTRAN shared memory
4.6. For FORTRAN primitive C-based functions are provided

4.6.1. stm_map() defines up to two FORTRAN areas to
managed

4.6.2. stm_read() refreshes from C area
4.6.3. stm_write() copies to C area
4.6.4. These can be used to build up higher level function like those for

the FS found in /usr2/fs/flib/: setup_fscom.f,
read_*.f, write_*.f

5. Semaphores

5.1. Provide a means for controlling access to resource, literal or “virtual”.
5.2. In C there are two levels of semaphores:

5.2.1. Numbered
5.2.1.1.Fixed number SEM_NUM (32)
5.2.1.2.Access functions

5.2.1.2.1. sem_take() take a semaphore, wait until
available if necessary

5.2.1.2.2. sem_put() release a semaphore
5.2.1.2.3. sem_nb() take if available (non

blocking), return -1 if not
available

5.2.1.2.4. sem_value() return value

5.2.2. Named

5.2.2.1.Fixed number SEM_NUM (32), disjoint from Numbered
semaphores uses a five-character name to identify (blank
pad to right)

5.2.2.2.once a name is used, it is defined until next boot
5.2.2.3.Access functions

5.2.2.3.1. nsem_take() take a semaphore, wait until
 available if necessary

5.2.2.3.2. nsem_put() release a semaphore
5.2.2.3.3. sem_test() return state, 1 = taken

5.3. In FORTRAN

5.3.1. only the named semaphores are supported
5.3.2. Access functions:

5.3.2.1. rn_take() take a semaphore, wait until
 available if necessary

5.3.2.2. rn_put() release a semaphore

5.3.2.3. rn_test() return state, .true. = taken
5.4. Defined named semaphores (blank pad to right to get five characters)

5.4.1. fs FS is active
5.4.2. fsctl schedule needs control with the next 2 seconds,

 coordinates hardware access of boss, chekr,
setcl, and fmset

5.4.3. fivpt fivpt is active
5.4.4. onoff onoff is active
5.4.5. pfmed pfmed is active
5.4.6. pcalr pcalr is active
5.4.7. lvdt access to the LVDT tape head motion controller

6. pcald

6.1. Used to collect phase-cal data
6.2. Sample stub in /usr2/fs/st.default/pcald
6.3. Should use fsctl named semaphore before accessing hardware

7. Asynchronous programs

7.1. Three options:

7.1.1. Started at boot time
7.1.2. Started from stpgm.ctl at FS start time
7.1.3. Started by antcn

7.2. Option (2) is preferred because if the FS is restarted the system is

completely re-initialized
7.3. Option (1) is necessary if the program needs to be running even when the

FS isn’t
7.4. Option (3) can simulate option (2) if it runs periodically, say every second,

by checking the fs named semaphores to see if the FS is running

7.5. Asynchronous WX data Retrieval Example

/* wxget - retrieve wx data asynchronously
 */

#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../../fs/include/dpi.h"
#include "../../fs/include/fs_types.h"
#include "../../fs/include/shm_addr.h" /* shared memory pointer */
#include "../../fs/include/params.h"
#include "../../fs/include/fscom.h"
#include "../../fs/include/pmodel.h"

#include "../include/stparams.h"
#include "../include/stcom.h"
#include "../include/stm_addr.h" /* shared memory pointer */

main(argc,argv)
int argc;
char **argv;
{
 int max,which;
 long ip[5],time;
 char buffer[28], bufs[10];
 float temp,pres,humi;

 setup_ids();
 setup_st();

 stm_addr->wx.which=-1;

 while(TRUE) {
 ip[0]=ip[1]=0;
 ib_req12(ip,"wx");
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2] < 0) {
 if(ip[0]!=0)
 cls_clr(ip[0]);
 logita(NULL,ip[2],ip+3,ip+4);
 continue;
 }
 rte_sleep(3);

 ip[0]=ip[1]=0;
 ib_req2(ip,"wx","S1D000X0/0*");
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2] < 0) {
 if(ip[0]!=0)
 cls_clr(ip[0]);
 logita(NULL,ip[2],ip+3,ip+4);
 continue;
 }
 rte_sleep(1001);

 ip[0]=ip[1]=0;
 ib_req5(ip,"wx",28);
 skd_run("ibcon",'w',ip);
 skd_par(ip);
 if(ip[2] < 0) {
 if(ip[0]!=0)
 cls_clr(ip[0]);
 logita(NULL,ip[2],ip+3,ip+4);
 continue;

 }
 rte_rawt(&time);

 max=sizeof(buffer);
 ib_res_ascii(buffer,&max,ip);

 memcpy(bufs,buffer+11,6);
 bufs[6]=0;
 if(1!=sscanf(bufs,"%f",&temp)) {
 logita(NULL,-99,"st"," ");
 continue;
 }
 memcpy(bufs,buffer+17,3);
 bufs[3]=0;
 if(1!=sscanf(bufs,"%f",&humi)) {
 logita(NULL,-98,"st"," ");
 continue;
 }
 memcpy(bufs,buffer+20,6);
 bufs[6]=0;
 if(1!=sscanf(bufs,"%f",&pres)) {
 logita(NULL,-97,"st"," ");
 continue;
 }

 if(stm_addr->wx.which < 0 ||1 < stm_addr->wx.which)
 which=0;
 else
 which=1-stm_addr->wx.which;

 stm_addr->wx.temp[which]=temp;
 stm_addr->wx.pres[which]=pres;
 stm_addr->wx.humi[which]=humi;
 stm_addr->wx.time[which]=time;
 stm_addr->wx.which=which;
 /*
 printf(" max %d buffer %s time %d which %d \n",max,buffer,time,which);

 printf(" temp %f pres %f humi %f\n",temp,pres,humi);
 */
 }
}

Cable-wrap:
What it is and how to deal with it

Ed Himwich, John Gipson

May 2015 TOW

Definitions
• Azimuth range of motion consists of two regions:

– Overlapped region, which can be reached two ways
– Neutral region, which can be reached only one way

• Overlapped region has two “wraps” (viewed from above)
– Counter-clockwise (CCW or W)
– Clockwise (CW or C)

• Neutral region is also conventionally called a “wrap”
• Limited to less than two full turns of travel
• Minimum travel is one full turn (plus 4°)
• SKED specifies azimuth limits in positive angles only

– Therefore a range of -90° -> +450° is represented as 270° ->
+810°

Figure 1. Example of cable-wrap. This is viewed from above. The
azimith range runs from 270° (-90°) to 810° (+450°). The center of
travel is at 540° (+180°). The W arc is the CCW wrap. The C arc is

the CW wrap. The N arc is the Neutral "wrap".

W

N

C

810270

540

SKED Scheduling I

• SKED always assumes the antenna goes the
shortest way when there is more than one choice

• This is more complicated than expected
– Wrap limits are not accurately know
– Exclusions zones (±2°) at each limit/transition zone are

used to eliminate ambiguous cases
• Sources may move beyond a limit while being

observed
– Exclude sources that would enter exclusion zone

inside wrap limit before observation ends

Figure 2. CCW and CW Scheduling Exclusion Zones. The
zones are ±2° around the CCW and CW

limits/transition points, respectively.

W

N

C

CCW Exclusion

CW Exclusion

SKED Scheduling II
• We would like to minimize exclusion zone impact

– Zones cover about 2% of the sky total
• They are needed because they eliminate uncertainty

about which direction the antenna should go
• Don’t need to avoid a zone if:

– More than 180° from the corresponding limit
• Three examples:

– (1) Slewing from CCW wrap
– (2) Slewing from Neutral wrap within 180° CCW limit
– (3) Slewing from Neutral wrap more 180° from both limits
– Cases (1) and (2) have corresponding cases for CW

Figure 3. Two example slews from the CCW wrap. These
examples illustrate that only the CCW exclusion needs to be

considered in this case. There is no opportunity for
confusion about the CW limit/transition point.

W

N

C

CCW Exclusion

X - Start of Slew
Y1 - Target of Slew 1
Y2 - Excluded

Target of Slew 2

X

Y1Y2

Figure 4. Two example slews from the Neutral wrap. From a
point in Neutral wrap that is close to the CCW limit (within 180°),

only the CCW exclusion needs to be considered.

W
N
C
CCW Exclusion
180 from CCW Limit

X - Start of Slew
Y1 - Target of Slew 1
Y2 - Excluded

Target of Slew 2

X

Y2

Y1

Figure 5. Slew from Neutral wrap. From a point in Neutral
wrap that far from both limits (more than 180°), neither

exclusion zone needs to be considered.

W

N

C

180 from CCW
Limit
180 from CW
limit

X - Start of Slew
Y - Target of Slew

X

Y

SKED Scheduling III

• Need to exclude slews that are 180°±2°
– Variations in timing can make direction

unpredictable
– If source enters the exclusion, before the slew is

over it should be excluded well

Figure 6. Scheduling exclusion zone to prevent slew of
180° (±2°) when there are two ways to reach the target.

W

N

C

180 Exclusion

Start of Slew

X - Start of Slew
Y - Excluded

Target of SlewX

Y

Field System I

• source=… command has a cable-wrap parameter for
Az-El antennas
– Fifth position, values: CCW, CW, Neutral, and null
– Each value specifies the wrap to use
– Null (empty) means “fastest” if two choices exist

• Normally not used in schedules
– Information for the operator

• FS just passes this parameter to antcn
– antcn implements this parameter for the antenna, if it can
– It can be used to make schedule execution more robust

Field System II

• Problems arise if commanded wrap does not
agree with current source wrap, this may
occur because:
– Limits in schedule don’t agree with the antenna
– source=… command is not executed at the

expected time
• Choice of direction of slew does not depend

on where the antenna is, only where the
target source is

Field System III
• Four examples:

– (1) Commanded wrap is Neutral but source is in overlap near CCW end
of Neutral
• Move to source on CCW wrap

– (2) Commanded wrap is Neutral but source is in overlap near CW end
of Neutral
• Move to source on CW wrap

– (3) Commanded wrap is CCW but source is in Neutral region near CW
end of Neutral
• Move to CCW limit on CCW wrap

– (4) Commanded wrap is CCW but source is in Neutral region near CCW
end of Neutral
• Move to source in Neutral wrap

– Cases (3) and (4) have mirror images for CW command wrap
• Invert all CWs and CCWs in conditions and actions

Figure 7. Commanded wrap is Neutral, I. In this case, when the
source is command it is in the Overlap region near the CCW end of

the Neutral region. The correct action is move to the source on
the CCW wrap, regardless of the start position.

W

N

C

Source Position

S - Wrap to use: CCW

S

Figure 8. Commanded wrap is Neutral, II. In this case, when the
source is command it is in the Overlap region near the CW end of

the Neutral region. The correct action is move to the source on
the CW wrap, regardless of the start position.

W

N

C

Source Position

S - Wrap to use: CW

S

Figure 9. Commanded wrap is CCW, I. In this case, when the
source is command it is in the Neutral region near the CW end of
the Neutral region. The correct action is move to the CCW limit

on the CCW wrap, regardless of the start position.

W

N

C

Source
Position

S - Wrap to use: CCW

S

Figure 10. Commanded wrap is CCW, II. In this case, when the
source is command it is in the Neutral region near the CCW end

of the Neutral region. The correct action is move to the source in
the Neutral region, regardless of the start position.

W

N

C

Source
Position

S - Wrap to use: Neutral
S

Operations
• When starting or restarting schedule make sure the antenna has time to

reach source on requested wrap
– If source command cable-wrap parameter is not implemented it may be

necessary to “walk” the antenna to the correct wrap
– Use schedule listing or source=… command to determine correct wrap

• Once on the correct wrap, no wrap errors should occur, if they do:
– Typically visible as the antenna “unwrapping” while trying to get to a source
– Action may help correct the problem if it is noticed soon enough, but

otherwise it may “self heal” in a scan or two, this depends on the schedule
– Report problem with:

• log comments
• Stop message
• Message to ivscc@ivscc.gsfc.nasa.gov

• If a source is command a long time (hours) before being observed and will
change wraps before being observed, intervention may (probably) be
require to reach the correct wrap.

mailto:ivscc@ivscc.gsfc.nasa.gov

