Linux System Administration and FSL10

David Horsley (NVI/NASA GSFC) Jonathan Quick (HartRAO)
TOW 2019

These notes are aimed at giving you

+ an overview of Linux/Unix systems and their operations

+ skills in configuring a system

- tools to diagnose hardware and software failures

+ some specific info and debugging tips for Field System machines

This will be somewhat basic but is not a first introduction to Linux. You are

expected to be familiar with a shell and a text editor (eg, nano).

At the end, we will discuss changes in the upcoming FSL10

Program and file names will be printed like this: 1s, /etc/fstab, ..
To distinguish user input from output, it will start with a “>”, eg:

> 1s /
bin
dev

(Don't enter the “>” character)
Privileged user input (eg. as root) will start with #, eg:

reboot
shutting down for system reboot

Background

Linux kernel

Linux is an operating system kernel

At its most basic level, a kernel is software that manages the interaction between a
computer’s hardware and the running programs.

It allows multiple programs to share the computer’s hardware and provide a
secure separation between them.

It also provides programs with a (mostly) hardware independent interface to
resources.

Program Program Program

CPU Memory Disk

Figure 1: Kernel's Role

Tker-nel: the central or most important part of something. syn: essence, core, heart.

Operating System

Programs Libraries

Operating System

To make usable operating system, you must combine the kernel with system and
application software. Things like 1s, mv, mount, as well as high level things like

desktops.

Typically the core set of tools are the GNU, which make the GNU/Linux Operating
System.

Often this is just called “Linux”.

The Linux kernel is also used by some non-GNU or even in non UNIX-like OSs
(Android, TVs, routers, cars, ...)

You're probably more than a few metres from a Linux kernel!

Linux Distributions

A Linux distribution is a particular packaging of the Linux OS. They provide the

kernel, a suite of system and application software, and tools to manage it all.

Different distributions (“distros”) can have very different system tools and
philosophy, but all have a core set of UNIX programs.

Some Linux Distributions

+ Debian: One of the oldest. Large repository of packages. Focus on free (libre)
software and stability. Supported distribution for Field System computers.

+ Ubuntu: Fork of Debian, focus on ease of use and commercial support.
Provides non-free (propriety) drivers by default.

+ Red Hat Enterprise Linux: focus on enterprise and server use.

« Arch Linux: rolling release, always latest stable versions of software.

Designed to be minimal and hands-on.

+ GParted Live: boots off a CD or USB drive and allows you to partition the
system drives. Handy if you've broken your system!

* ...and hundred more!

GNU/Linux is just one part of a big family of UNIX-like OSs.

What we cover here will also apply to varying extent to other Unixes.

1970 1980 1990 2000 2010 e
FreeBSD 102
BSD family [NetssD 7.0]
L»{ OpenBSD 5.8 |
—>{ BSD (Berkeley Software Distribution) 4.4]
Biljoy | »l'sunos 414
Darwin
| 33
| macos 10.11
Apple
Microsoft/SCO GNU/Hurd Klé
Richard Stallman r’l Linux 4.3
,,,,,,,,,,,,,,, Minix | Linus Torvalds 3.3
Andrev& S. Tanenbaum
Bell Labs: Ken Thompson, n
Dennis Ritchie, et al. UnixWare
Univel/SCO
Solaris 11.3|
Sun/Oracle
System Il & V family [Hp-ux 1liv 3|
—{ A 7.2|
1BM
e —— 6530 |
SGI

Figure 2: Timeline of Unix and Unix-like OSs. Linux and macOS (formally OS X) are the most

commmon.

The State of Linux OSs

Most of the big GNU/Linux operating systems using a software suite called
systemd.

- systemd is more than just an init system.

+ itisintended to be a whole unifying system layer of the 0OS

+ More components of the OS are being shifted into the systemd universe, but
for now old UNIX ways still exist in parallel or at least are emulated by
systemd

For a lot of what we will discuss, there is a more pure systemd way

- orifthere isn't, it's probably planned

- today we will just cover the init system and service management.

The next version of this talk may be different.

Getting Help

RTFM: read the “friendly” manual

man (short for “manual”) provides extended documentation on tools and libraries

on your system. Use it!
Try:
> man man

man pages are split into different sections. Sometimes you will need to specify the

section when the page name alone is ambiguous, e.g.:

> man crontab
> man 5 crontab

(Section 5 is for file types)

Often you will see the section in parentheses after the page. E.g. crontab(5)

Other On-System Resources:

apropos ? searches the man pages — forgot a command, use this.

Often the —h flag will provide short help.

2ap-ruh-poh: regarding/concerning

Other Resources

Field System Specific (found in fs/misc):

+ FSL9/10 Installation Guide
+ FSL9/10 RAID Guide

Debian Specific:

+ Administrator’s Handbook — Also see the older Wheezy version
+ Reference Card — One page you can print and put beside your PC

+ Bug Tracking System
Arch Linux Wiki — even if you don’t use Arch Linux!

Google — Try writing in the program and the error you see on screen.

https://debian.org/doc/manuals/debian-handbook/
https://debian-handbook.info/get/old/
https://debian.org/doc/manuals/refcard/refcard.en.pdf
http://debian.org/Bugs/
https://wiki.archlinux.org

Basic Sysadmining

The Filesystem

Linux, as a UNIX-like OS, has a single virtual file system. All accessible files are

somewhere in this tree, even if the they are on a different physical device.

The “root” of the tree is denoted by “/”

ntp.confj

init;;w

Tinux.pdf

Figure 3: Unix virtual file system

Filesystem Info

+ 1s — list contents of a directory
Extra info with -1 flag.
« df —report file system disk space usage
+ du — estimate file space usage
Without arguments list all files and subdirectories. More useful is with flags:
> du -hs
List the usage of the current pathin human readable format (-h)
+ 1sblk — list block devices (physical and virtual disks)

+ mount — List mounted file systems and mount flags. Also used for mounting
other file systems — more on this later.

Users and Permissions

Linux as inherits Unix’s concept of users and groups.

All files and directories (“folders”) have an owner user and an owner group, as well

as permissions associated with these:

« the owner user (u),
- the owner group (g),
- and other (o).

For each category of user, there are three fields or “bits” which control control if

that type of user can:

« read (r),
- edit (w),
- or execute (x) the file. (x on a directory allows a user to access its contents)

> 1s -1 /home/deh/tow2019/
-rw----r-- 1 deh tow 3422 Apr 25 2019 linux.pdf
drwxr-xr-x 3 deh deh 4096 Apr 15 2019 figs

Changing Permissions

To change permissions use chmod

> cd /home/deh/tow2019/

> 1s -1 linux.pdf

-rw-r--r-— 1 deh tow 3422 Apr 25 2019 linux.pdf
> chmod u+x linux.pdf

> chmod g+w linux.pdf

> chmod o-r linux.pdf

-rwxrw—--- 1 deh tow 3422 Apr 25 2019 linux.pdf

Special Permissions Bits

+ u-s — setuid (set user identity).

Makes an executable file run with the permissions of the user. (This is how

passwd can change the usually inaccessible files to change your password)
No effect on directories.

+ g-s — setguid (group id)
Similar to setuid.

For directories, put files created in the directory into the same group as the

directory, no matter what group the user who creates them is in
+ —t - “save program text on swap device”

For directories, prevent users from removing files that they do not own in the

directory

The “superuser” root can bypass all these permissions. (Apparently named
because it's the only user that can write to the root directory)

root can delete, start, and stop anything; erase hard drives, etc. Be careful!
Most system files can be read all users (like oper), but only written to by root
To login as root from a regular account, use:

su -

Which either stands for “set user” or “superuser.” The flag “=" gives a login shell.
You must enter root’s password.

If you want an independent session as root, change to a virtual console (eg, by

pressing Ctrl-Alt-F1) and login as root. Do not start an X Windows session as root.

sudo (superuser do) allows a user to run one command with root privileges, eg:
> sudo less /var/log/kern.log

sudo can be configured to give subset of root privileges to users. Eg, only allow
certain commands to be run as root. sudo is preferred in some environments for

auditing purposes.

For some OSs (eg Ubuntu and macOS), this is the default way to get root access.
The sudo package may not be installed by default. To install

apt-get install sudo

/etc/sudoers is the access list

The password requested is the user’s password, not root’s. By default sudo

keeps the current session authorized for 15min — handy!

Standard Linux Directories

Most Linux distros follow the Filesystem Hierarchy Standard. Other Unixes are

similar but not identical.

Path

Contents

/bin
/1ib
/etc
/usr
/tmp
/home
/root
/boot
/sbin
/mnt
/var

essential programs (binaries)

essential application libraries

configuration files

“UNIX system resources”. Nonessential resources.
temporary files, typically cleared at shutdown
user home directories

the root user’s home directory

boot files (optional)

system administration programs

temporary mount points

contains “variable” data

https://wiki.debian.org/FilesystemHierarchyStandard

Jusr Subdirectories

/usr/ also contains bin and 1ib which store non critical programs and libraries.
This is most of them.

There is also /usr/share/doc which stores documentation.

/var Subdirectories

/var contains variable data that changes while system is running:

- /var/log — run-time log files

- /var/spool — queued files (e.g. Printer)

- /var/mail — mailboxes

« /var/lock — “lock” files to ensure only one copy of a program is running

« /var/run — interface

- /var/tmp — similar to /tmp but typically with longer lifetime

- /var/cache — cache of downloads and computations. Can be cleared
without loss.

- /var/lib/dpkg/info - status of installed software

Everything is a file

A big idea of Unix, is that “everything is a file”

Devices plugged into your computer, system processes, interfaces to running
programs, everything!® are all represented as files in the (virtual) filesystem

3well not quite everything; see “Plan 9 From Bell Labs”, an intended successor to Unix, for an 0S that
really, really made everything a file, including CPUs on on someone else’s computer!

Some Nonfile files

Some directories that are all purely virtual:
+ /proc — process information
- /dev — device files which provide a file interface to physical devices.

- /sys —info about devices and high-level interface to some components.

/proc and processes

A process is arunning program

/proc contains a directory for every process, which contains files that can be
read to retrieve info the process.

You can, eg, list all the files open by a process ddout:

1s -1 /proc/$(pgrep ddout)/fd

/proc also contains files used for querying the system information.

Eg.

« /proc/cpuinfo — info on the CPU(s) of the system

+ /proc/meminfo — free and used memory in the system.

Typically you will use free for this. Particularlly useful is the —h flag to
free which display the output in human readable format (mega/giga bytes)

Inspecting processes

Usually you also don't inspect /proc manually to view process information,

instead use a tool. For example, to view a dynamic display run

top

Press ‘X’ to sort and ‘<’ and ‘>’ to select the column (eg. to %CPU or %$MEM)
Print of current running processes to stdout

ps -ef

Print the process tree:

ps axjf

Note some information is only available to root.

Search through processes

pgrep -a <name>
ps -ef | grep <name>

Killing processes

To send a “terminate” signal to a process: (<pid> is the process identifier — found,
for eg, with ps or top)

> kill <pid>

This will instruct the process to gracefully shutdown. Regular users can kill only
their own processes, root can kill anything.

For more drastic situations, send a “kill” signal (see man 7 signal)

> kill -KILL <pid>
> kill -9 <pid>

This instructs the kernel to deal with the process itself, without a chance to
cleanup.

To kill all programs matching <name>:

> pkill <name>
> killall <name>

Careful with these (eg “fs” may match a lot of processes you don’t want to kill!)

Some Devices in /dev

- /dev/sda, /dev/sdb, ... — SATA disks

+ /dev/hda, /dev/hdb, ... — Older IDE disks
- /dev/ttySo01,..— Serial ports.

- /dev/audio — Audio port

There are also device files that are not physical ones, eg:

- /dev/zero — An infinite number of zeroes

- /dev/null — The “bit bucket”, send data here you want to disappear.

- /dev/random, /dev/urandom — a stream of random bits. (random can
block, urandom will not)

Make white-noise:
cat /dev/urandom > /dev/audio
“Securely” wipe a disk with noise:

cat /dev/urandom > /dev/sda

The whole disk

- /dev/sda
- /dev/sdb, c, d etc.

(/dev/hda etc for IDE)

Typically disks are these are partition into smaller segments. A partition is a
contiguous part of the whole disk.

These show up in Linux as

/dev/sdal, 2, ..

These are use to:

+ Separate user files and system files — as done in FS PCs. This allows the

system partition to be wiped without affecting user data.
+ Have different 0Ss (like Windows and Linux) on the same disk

+ To have boot files accessible to older BIOS's by keeping them below the 1024
cylinders boundary

Partition tables are data at the start of the disk and describe the partition
boundaries to the OS.

There are two common standards for this:

Master Boot Record (MBR)

Also sometimes called DOS partitions.
Old format

+ Limited to 2 TB
+ Limited to 4 partitions per disk.
« This can be overcome by creating a special extended partition which holds up to
16 “logical drives”. In Linux, these will show up as /dev/sda5, ...

+ Can use fdisk manipulate partitions

GUID Partition Table (GPT)

New format

+ Limited to 9 ZB
- Limited to 254 partitions.

+ Can use gdisk to manipulate

parted or its GUI counterpart gparted provide convenient interfaces for editing
partitions. Changing partitions can destroy all the data on the disk!

MD — Linux Software RAID

RAID (Redundant Array of Independent/Inexpensive Disks) allows you to combine

disks to help protect data from disk failures.
md (Multiple Device) is Linux’s software RAID layer.
This allow you to combine block devices (disks, partitions, memory, ...) into one.

+ RAIDO: split (“stripe”) data over multiple disks. not really RAID (no R). Use if
you have lots of data if you want to access fast and you can afford to lose it.

Data can survive after O failures. Lose 0 disks of space.
+ RAID1: copy (“mirror”) data on multiple disks.
With n disks, data is safe after n — 1 failures. Lose n — 1 drives of space.

- RAID5(6): uses a parity disk/partition to make a (fault tolerant) from many
disks. Can survive 1(2) disk failures.

RAIDs are presented as devices at /dev/md*

Also seen via Lsblk

LVM

Logical Volume Management is a further layer in the Linux kernel.
Allows you to make “virtual” volumes on top of block devices, typically RAIDs.
Useful as you can’t partition a RAID device.

Can be use to make a JBOD array (just a bunch of disks).

Managing RAIDS

- md RAIDs are managed with mdadm

- md RAID state can be found in /proc/mdstat

File systems

To use a disk/partition/RAID to store files, you must create a file system

- This is book keeping data. It determines things like how files names,
directories, modification times, permissions, as where the actual data are
stored.

The current “native” format for Linux is the fourth extended filesystem ext4
To create a filesystem on a device:

+ Hard disk partitions: mkfs.ext4 /dev/sdal
+ Raid volumes: mkfs.ext4 /dev/mdo

This is called formatting as it sets the format of the data. Note this effectively

erases the device

Other File systems

Linux has extensive support for “foreign” file system types
Windows FAT partitions can be used as vfat

Network File System nfs, Windows ntfs, macOS hfs+, others...

To access the files on the disk (partition/RAID/...), the filesystem must be mounted.
Mounting to a mount point (-directory)
mount /dev/sdal /home

(By default mount will try to detect the filesystem type, but you can explicitly set it
with -T.)

Mount points are normal directories. Mounting hides the old directory contents.

/dev/sda2

mount

Tinux.pdf

Figure 4: Before mounting

Tinux.pdf

Figure 5: After mounting

Managing mounts

See what partitions are mounted (displays information from /proc/mounts)
with

mount

Unmount with umount /mnt

Boot time mounts in /etc/fstab, mounted with mount -a. Eg:
/dev/sda3 /usr2 ext2 defaults 0 2

(seeman fstab)

Unmounting is necessary before:

fsck, mkfs.ext3, fdisk, tune2fs

These directly alter file system / partition structures!

The Root Partition

The partition/device mounted as / is given to the kernel by the bootloader (GRUB)

Other partitions are mounted as listed in the /etc/fstab file (found on the /

partition)

Network Info

ip — show / manipulate routing, devices, policy routing and tunnels (replaces
ifconfig, route, and netstat for Linux)

Useful commands:

List IP address

> ip address # 1ip a
List routes

> 1ip route # dip r

d+ig — DNS lookup utility (alternative to nslookup)

w, who — Users logged in and what they are doing

Network Configuration

Filename Description
/etc/hostname Has name and IP address of this computer
/etc/hosts

/etc/network/interfaces The details of all available network
interfaces

/etc/resolv.conf Has the IP addresses of DNS name server(s)

Network Protection “tcpwrappers”

During boot, the “Internet super daemon” inetd is started
Jetc/inetd.conf lists the services (TCP/UDP port numbers) inetd will listen to

When a connection from the outside is made,inetd runs the command listed in

inetd.conf. This has been superseded by systemd sockets.
For almost all services, this is the tcpd wrapper which:

« First checks restrictions
- If allowed, starts the real service executable

tcpwrappers is not a firewall, it is an access list.

/etc/hosts.allow & /etc/hosts.deny

Have quite complex syntax (see man 5 hosts_access for details)
Effective only for entries with tcpd in /etc/inetd.conf

+ Plus a couple of stand-alone server programs into which there is special
support coded in
+ For example the X server doesn’t obey these!

/etc/hosts.deny:

ALL: ALL

/etc/hosts.allow:

ALL: .foobar.edu EXCEPT terminal.foobar.edu

+ Executable names!

Further Editing in /etc

Disabling user accounts for logins
+ Just replace the password in /etc/passwd with a *, eg:
user:*x:500:500:...
X configuration is now auto-generated. Use
dpkg-reconfigure xserver-xorg

etc.

CUPS printer daemon is configured in /etc/cups/cupsd.conf
Easiest configuration is using the CUPS web interface:

- Navigate to the URL http://localhost:631/

Background Process

Periodical Jobs with cron

The cron runs in the background with 1 min resolution, starting timed jobs
Debian’s configuration files
/etc/cron.d
+ Precisely timed jobs
+ Special file format
/etc/cron.daily, /etc/cron.weekly, /etc/cron.monthly
Plain shell scripts for periodical chores (like deleting old log files)

Run queue every 5 minutes
*/5 x x % *x [fusr/sbin/exim -q >/dev/null 2>&1

man 5 crontab

Run once in the future

atis similar to cron, but is for one-off jobs, eg.

at 1pm
at today +2 hours
at 1135 jan

Daemons

Daemons” are background processes, not attached to a user's terminal.
Services on Linux/Unix are provided by daemons. These include things like

+ Network time (ntpd)

+ Network configuration (dhcpd)
- Secure (remote) Shell (sshd)

+ Mail (exim4)

“From Maxwell’'s Demon. The Ancient Greek Saipwy, unlike the Christian “demon”, is benevolent or

benign being.

How to daemons come into being?

(We're not going to talk about The Silmarillion)
Daemons are generally started and managed by the init system.

Daemon may depend on services provided by other daemons or on machine state,
so init can be tricky.

Eg, ntpd should be started once the network is ready, the graphical login manager
should be started after the graphics system is ready

Linux PC-Level Startup

(On IBM Compatible PCs)

1. The motherboard performs a Power-On Self Test (POST)
« Checks for required hardware: CPU, RAM, ...
+ Historically this was done by the BIOS (basic i/o system) now UEFI.
2. Motherboard then looks for bootable disks (Master Boot Record (MBR) or GPT)
+ For Linux systems, this means a partition contains GRUB, the GRand Unified
Bootloader,
- Order of disks can be set in BIOS

3. GRUB is loaded off the disk and starts by showing the boot menu. When you
select your OS, the Linux kernel and other resources the early stage kernel

will need into memory an jumps to the kernels entry point

4. Linux kernel starts, checks hardware, then attempts to locate the “root
partition” This becomes the root (/) of the file system

5. Once / has been mounted (read-only), the kernel starts /sbin/init. As
process #1 (PID 1), the grandparent of all processes

At this point, there a no disks mounted (except the read only initial partition). It's
init’s task to take this bare bones system to a usable state.

The state of init

What happens from here things vary between 0Ss/Distros.
« Until recently, (pre-2012) most Unixes used System V (SysV) style init.

- Most major Linux distributions have changed to systemd, which has a
different model to support concurrent boot and more complex features.

+ Others have also moved to OpenRC for similar reasons, which maintains a

more SysV model.
We will cover systemd here, as this is the init system in use by Debian Stretch

If you have an older OS, you may need to lookup documentation of SysV init.

systemd targets

« systemd starts by loading the default target for the system

- In systemd, a target is a collection of services (daemons) and it can depend
on lower level targets.

+ For instance, a common target is the “graphical.target”. “multi-user.target” is
another common target for headless systems.

+ The default target is described in
/etc/systemd/system/default.target, which is typically a symlink
toafilein /usr/1lib/systemd/system/

For example the “graphical.target” file looks like:

[Unit]

Description=Graphical Interface

Documentation=man:systemd.special(7)

Requires=multi-user.target

Wants=display-manager.service

Conflicts=rescue.service rescue.target

After=multi-user.target rescue.service rescue.target \
display-manager.service

AllowIsolate=yes

systemd targets cont.

Targets are similar to SysV run levels, however they are much more versatile, as
multiple targets can be active at once.

You can see the currently active targets with
systemctl list-units --type=target

Eg...

UNIT

basic.target
bluetooth.target
cryptsetup.target
getty.target
graphical.target
local-fs-pre.target
local-fs.target
multi-user.target
network-online.target
network-pre.target
network.target
nfs-client.target
nss-lookup.target

nss-user-lookup.target

paths.target

LOAD

loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded

loaded

loaded

ACTIVE
active
active
active
active
active
active
active
active
active
active
active
active
active

active

active

DESCRIPTION
Basic System
Bluetooth
Encrypted Volumes
Login Prompts
Graphical Interface
Local File Systems (Pre)
Local File Systems
Multi-User System
Network is Online
Network (Pre)
Network
NFS client services
Host and Network
Name Lookups
User and Group
Name Lookups
Paths

remote-fs—-pre.target
remote-fs.target
rpcbhind.target
slices.target
smartcard.target
sockets.target
sound.target
swap.target
sysinit.target
time-sync.target
timers.target

loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded

active
active
active
active
active
active
active
active
active
active
active

Remote File Systems (Pre)
Remote File Systems

RPC Port Mapper

Slices

Smart Card

Sockets

Sound Card

Swap

System Initialization
System Time Synchronized
Timers

Managing services with systemd

Services are the most common unit in systemd.

Typically they are provided by a daemon, which is managed by systemd
systemctrlis the all purpose tool for managing systemd

Start services:

systemctrl start sshd

Stop services:

systemctrl stop sshd

Enable (on startup) :

systemctrl enable sshd

systemd topics we didn’t cover

As | mentioned, there's more to systemd we haven’t covered here, including:

- sockets

- devices

+ mounts and automounts

+ paths

- timers (which can be used as a cron-like job scheduler)

+ snapshots

- slices (used to group and manage processes and resources)

+ journald

Maybe next time | give this talk we will replace all the Unix stuff with systemd.

Debian Sysadmin

APT — Advanced Packaging Tool

apt is the interface to Debian’s package manager.

+ Tracks package availability across multiple archives and releases

+ Allows installation by package name directly

Replaced dselect

APT commands

Installation and removal:

apt install <name>
apt remove <name>

Update apt’s package list (sync with the servers):
apt update
Upgrade

apt upgrade #all out-of-date packages
apt upgrade <name>

(Note: on old Debian based systems, need apt-get)
Search:
apt search

(Note: on old Debian based systems, need apt—-cache)

dpkg is the lower-level system, accessed by apt
Debian’s basic package tool

+ Can install and remove .deb packages directly
+ Knows about package dependencies but not about package archives and
availability of updates

Keeps installed state in /var/lib/dpkg/info
<name>.list, <name>.postinst

All package installation, basic setup and removal is handled by dpkg

APT

apt-cache --installed rdepends git

APT and Security Updates

apt also tracks security update availability at security.debian.org

Use apt-get update to reload package availability then apt-get -u
upgrade to see what upgrades are currently available

fsadapt in FS Linux 9 installs automatic cron script based on this to warn about
upgrades

Hardware Problems

Disks Failure

HDD and SSD failure is probably the most common problem nowadays.
HDDs failure mostly determined by age with ~2-4% Annualized Failure Rate (AFR) °

SSDs have a much lower AFR, but wear with number or writes. Wear is indicated by

slowly increasing Uncorrectable Error Count.

SATA bus, cabling, connectors, terminators — Show up as nondeterministic disk

failures

SBackblaze 2016 Stats https://www.backblaze.com/blog/hard-drive-benchmark-stats-2016/

https://www.backblaze.com/blog/hard-drive-benchmark-stats-2016/

Symptoms:

+ Clicking or scratching sounds from the disk
+ Unreadable blocks (see /var/log/kern.log)
* Increase rapidly over time = backup quickly

Disk Warning Signs

smartctl -a /dev/sda
This gives you “S.M.A.RT” codes. Most important ones are: °

+ SMART ID 187 (0xBB): Reported Uncorrectable Errors
« HDD: 0: good; >0: replace
-+ SSD: a few is ok; rapidly increasing is bad

+ SMART ID 5 (0x05): Relocated Sectors Count
+ 0: good; 1-4: keep an eye on it; > 4: replace
+ SSD: a few is ok; rapidly increasing is bad

+ SMART ID 188 (0xBC): Command Timeout
+ 1-13 keep an eye on it, more than 13 replace

+ SMART ID 197 (0xC5): Current Pending Sector Count
« 0: good; 1 or more: replace

+ SMART ID 198 (0xC6): Uncorrectable Sector Count

« 1or more replace

®Backblaze Blog https://www.backblaze.com/blog/hard-drive-smart-stats/

https://www.backblaze.com/blog/hard-drive-smart-stats/

Fairly Common. Fans last 3-5 years. Dust can be a problem.
Symptoms:

+ Modern motherboards will shutdown the computer if the CPU gets too hot
(~100 Q)
+ You may get an audible alarm
+ A good sign is if the system operates for a few minutes before shutting down.
+ You can check temperates and alarms in BIOS

+ Older PCs may behave erratically
Causes:

+ Clogged or broken CPU heat-sink fan
+ Bad thermal connection between CPU and heat-sink
+ Bad airflow inside case

Fix:

+ Clean case and fans

« Renlace fans

Motherboard Problems

Less likely. Motherboards can last 5-10 years if survive first year.
Symptoms:

+ Hard to diagnose
+ Does not POST

- Random Reboots
* Peripherals

Causes:

+ Overheating
+ Age

Fix:

+ Replace

Less likely. Similar to motherboards, if not DOA, probably last 5-10 years.
Symptoms:

+ Random program crashes
+ Random reboots

Checks:

Newer Field System machines come with ECC RAM. To check status use EDAC (Error
Detection And Correction) utils (install edac-utils):

edac-util
Add a memtest86+ to your GRUB menu
apt-get install memtest86+

Reboot to it and let run for several hours.

Field System Linux 10

Field System Linux 10

Field System Linux is the supported OS for FS operations.

 Mostly this is a standard Debian install with some predefined packages and
checkout procedures.
+ We also define supported hardware and a backup schedule

FSL10 will be the next supported 0S, based on Debian 9 (“stretch”)
+ Currently testing, Expected release summer 2019

+ Hardware support is getting a lot easier, but we will need some brave stations
to test.

Changes:

- Better packages installed by default!
+ RAID changes:
« Single RAID block device rather than 3, with LVM partitions on top.
-+ Fix some issues with swap partition.
« Also allow resizing of root if needed
+ Dual 32/64bit (x86) architectures
+ Support for compiling with gfortran
+ SysV init scripts converted to systemd units
+ Recommend doing the same for any station init scripts.
- Additional security required at NASA stations provided as option for everyone
else.

Converting station code to 64bit

The biggest obstacle for compiling FS/station code on x86_64 is the size of long
integers changed

- x86: int: 32bits, Long: 32bits
+ X86_64: int: 32bits, Llong: 64bits

This causes errors with Fortran interfaces

+ Quick and dirty fix: convert all Longs to ints
+ We have a script to do this and handled most edge cases
+ A couple of system calls require Long — but will be documented
+ For network code, consider using C99 fixed size types from <stdint.h>

+ Also, need some Fortran compiler flags

	Background
	Getting Help
	Basic Sysadmining
	Background Process
	Debian Sysadmin
	Hardware Problems
	Field System Linux 10

