# Imaging Supermassive Black Holes with the Event Horizon Telescope

Model

Model (Convolved)

EHT 2017







#### Kazu Akiyama

(MIT Haystack Observatory / JSPS Fellow)

#### On Behalf of the EHT Imaging Working Group:

Michael Johnson, Andrew Chael, Ramesh Narayan (CfA/SAO), Katie Bouman (MIT CSAIL), Mareki Honma (NAOJ) et al.

Kazunori Akiyama, NEROC Symposium: Radio Science and Related Topics, MIT Haystack Observatory, 11/04/2016

# Radio Interferometry: Sampling Fourier Components of the Images

#### **Image**



#### **Image**

Fourier Domain (Visibility)





#### **Image**



### Fourier Domain Sampling Process (Visibility) (Projected Baseline = Spatial Frequence





(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

#### **Image**



### Fourier Domain Sampling Process (Visibility) (Projected Baseline = Spatial Frequence





(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

**Image** 

Fourier Domain Sampling Process
(Visibility) (Projected Baseline = Spatial Frequence







(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

Sampling is NOT perfect

# Interferometry Imaging: Observational equation is ill-posed



## Interferometry Imaging: Observational equation is ill-posed



## Interferometry Imaging: Observational equation is ill-posed



- Equation is ill-posed: infinite numbers of solutions

#### Interferometry Imaging: Observational equation is ill-posed



- Equation is ill-posed: infinite numbers of solutions
- Interferometric Imaging: Picking a reasonable solution based on a prior assumption

Kazunori Akiyama, NEROC Symposium: Radio Science and Related Topics, MIT Haystack Observatory, 11/04/2016

#### **Approach I: Sparse Reconstruction**

# Approach I: Sparse Reconstruction Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_0 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$

Philosophy: Reconstructing images with the smallest number

of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_0 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$

L<sub>p</sub>-norm:
$$||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}} \quad \text{(p>0)}$$

 $||x||_0 = \text{number of non-zero pixels in the image}$ 

Philosophy: Reconstructing images with the smallest number

of point sources within a given residual error

of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_0$$
 subject to  $||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$ 

Number of non-zero pixels (point sources)

L<sub>p</sub>-norm: 
$$||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}} \quad \text{(p>0)}$$

 $||x||_0 = \text{number of non-zero pixels in the image}$ 

Philosophy: Reconstructing images with the smallest number

of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_0$$
 subject to  $||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$ 

Number of non-zero pixels (point sources)

Data Obs. Image

Chi-square: Consistency between data and the image

L<sub>p</sub>-norm:
$$||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}} \quad \text{(p>0)}$$

 $||x||_0 = \text{number of non-zero pixels in the image}$ 

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

 $\min_{\mathbf{x}} ||\mathbf{x}||_0 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$  Number of non-zero pixels Data Obs. Image

Computationally very expensive!! (It can be solved for N < ~100)

140 Wi 28 Roy Ste 12 Bet a bill AR DIVISE STEEL SAL ROY SE

- L<sub>0</sub> norm is not continuous, nondifferentiable
- Combinational Optimization

CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993) Computationally very cheap, but highly affected by the Point Spread Function



Dirty map:

FT of zero-filled Visibility

Point Spread Function:
Dirty map
for the point source

Solution:
Point sources
+ Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)

CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993) Computationally very cheap, but highly affected by the Point Spread Function



Dirty map:

FT of zero-filled Visibility

Point Spread Function:
Dirty map
for the point source

Solution:
Point sources
+ Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)

CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993) Computationally very cheap, but highly affected by the Point Spread Function

CLEAN is problematic for the black hole shadows?



Kazunori Akiyama, NEROC Symposium: Radio Science and Related Topics, MIT Haystack Observatory, 11/04/2016

# Approach I: Sparse Reconstruction LI regularization (LASSO, Tibishirani 1996)

**Convex Relaxation**: Relaxing L0-norm to a convex, continuous, and differentiable function

**Convex Relaxation**: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$

**Convex Relaxation**: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$



equivalent

$$\min_{\mathbf{x}} \left( ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l ||\mathbf{x}||_1 \right).$$

Chi-square

Regularization on sparsity

**Convex Relaxation**: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$



- Reconstruction purely in the visibility domain:
   Not affected by de-convolution beam (point spread function)
- Many applications after appearance of Compressed Sensing (Donoho, Candes+)

# **Approach I: Sparse Reconstruction Application of LASSO (Honma et al. 2014)**



(Honma, Akiyama, Uemura & Ikeda 2014, PASJ)

# Approach I: Sparse Reconstruction For Smoother Image: sparsity on gradient domain

Total Variation: Sparse regularizer of the image in its gradient domain

$$||\mathbf{x}||_{\text{tv}} = \sum_{i} \sum_{j} \sqrt{|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2}.$$

$$||\mathbf{x}||_{\text{tv}} = \sum_{i} \sum_{j} (|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2).$$

 $L_1$  + TV regularization (Akiyama et al. 2016b,c, Kuramochi+ in prep.)

$$\min_{\mathbf{x}} \left( ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l ||\mathbf{x}||_1 + \Lambda_t ||\mathbf{x}||_{\text{tv}} \right)$$



(Sgr A\*; Kuramochi, *Akiyama*, et al. in prep.)



(Sgr A\*; Kuramochi, *Akiyama*, et al. in prep.)

Kazunori Akiyama, NEROC Symposium: Radio Science and Related Topics, MIT Haystack Observatory, 11/04/2016

Approach 2: Maximize the Information Entropy Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

### Approach 2: Maximize the Information Entropy Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

$$\min_{\mathbf{x}} (||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} - \Lambda f_{\text{entropy}}(\mathbf{x}))$$

$$f_{\text{entropy}}(\mathbf{x}) = -\sum_{i} x_{i} \log \left(\frac{x_{i}}{m_{i}}\right)$$

### Approach 2: Maximize the Information Entropy Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

$$\min_{\mathbf{x}} (||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} - \Lambda f_{\text{entropy}}(\mathbf{x}))$$

$$f_{\text{entropy}}(\mathbf{x}) = -\sum_{i} x_{i} \log \left(\frac{x_{i}}{m_{i}}\right)$$

- Compared with CLEAN:
  - (I) Better fidelity for Smooth Structure (2) Better optimal resolution



(Chael et al. 2016, ApJ)

### Approach 2: Maximize the Information Entropy Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

- PolMEM: Extension of MEM to full-polarimetric Imaging (Chael+16)



(Chael et al. 2016, ApJ)

### Approach 3: Machine-learn Distribution of Image Patches A patch prior (CHIRP; Bouman et al. 2015)

#### Simple Example



### Approach 3: Machine-learn Distribution of Image Patches A patch prior (CHIRP; Bouman et al. 2015)

#### Simple Example



### Approach 3: Machine-learn Distribution of Image Patches A patch prior (CHIRP; Bouman et al. 2015)

#### Simple Example



### Probability Distribution of "Multi-scale Patches"



Can be used as "A Prior Knowledge"

### Approach 3: Machine-learn Distribution of Image Patches A patch prior (CHIRP; Bouman et al. 2015)

CHIRP: Continuous High Image Resolution using Patch priors

Reconstruct the image so that it maximizes consistency with a machine-leaned patch prior distribution



### Approach 3: Machine-learn Distribution of Image Patches A patch prior (CHIRP; Bouman et al. 2015)

CHIRP: Continuous High Image Resolution using Patch priors Reconstruct the image so that it maximizes consistency with a machine-leaned patch prior distribution



#### Summary

- All state-of-the-art imaging techniques developed for the EHT have shown much better performance than the traditional CLEAN.
- These techniques can be applied to any existing interferometers
- These techniques would be applicable to similar Fourier-inverse problems

   (e.g.) Faraday Tomography (RM Synthesis)
   Mostly equivalent to linear polarimetric imaging



M87 jets (Application to VLBA data)

- Color: CLEAN (3mm)
- Lines: Sparse Modeling (7mm)