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Radio Interferometry:  
Sampling Fourier Components of the Images
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Radio Interferometry:  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(Images: adapted from Akiyama et al. 2015,  ApJ ; Movie: Laura Vertatschitsch)
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Radio Interferometry:  
Sampling Fourier Components of the Images

(Images: adapted from Akiyama et al. 2015,  ApJ ; Movie: Laura Vertatschitsch)

Sampling is NOT perfect
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Interferometry Imaging:  
Observational equation is ill-posed
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Approach 1: Sparse Reconstruction
Philosophy: Reconstructing images with the smallest 

number  
  of point sources within a given residual error

Lp-norm:

||x||0 = number of non-zero pixels in the image

(p>0)

Computationally very expensive!! 
(It can be solved for N < ~100)  

- L0 norm is not continuous, nondifferentiable 
- Combinational Optimization
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Approach 1: Sparse Reconstruction 
CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

Dirty map: 
FT of zero-filled

Visibility

Point Spread Function: 
Dirty map  

for the point source

Solution:
Point sources 

+ Residual Map

Computationally very cheap, but highly affected by the Point Spread 
Function 

(3C 273, VLBA-MOJAVE data at 15 GHz)
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MEM algorithm with full visibility phase information, directly minimizing Eq 4 with the �2 term in Eq. 5. This choice,
while infeasible in practice due to phase errors, allowed us to directly compare to CLEAN without introducing the
need for self-calibration.

After obtaining MEM and CLEAN reconstructions from the same data, we convolved the reconstructed images with a
sequence of Gaussian beams scaled from the elliptical Gaussian fitted to the Fourier transform of the u, v coverage (the
“clean beam”). We then computed the normalized root-mean-square error (NRMSE) of each restored image:
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where I0 is the final restored image and I is the true image. For the CLEAN reconstructions, we chose not to add the
dirty image residuals back to the convolved model, as the residuals are a sensible quantity only for the full restoring
beam. To minimize the e↵ect of this choice on the CLEAN reconstruction, we chose a compact model image with no
di↵use structure. After tuning our CLEAN reconstruction for this image, the total flux left in the residuals was less
than 2% of the total image flux. In performing the CLEAN reconstruction, we used Briggs weighting and a loop gain
of 0.025, with the rest of the parameters set to the default in the algorithm’s CASA implementation 7.

Figure 4. (Left) Normalized root-mean-square error (NRMSE, Eq. 17) of MEM and CLEAN reconstructed Stokes I images as a function
of the fractional restoring beam size. For comparison, the NRMSE of the model image is also plotted. The reconstructed images were
produced using simulated data from the EHT array; for straightforward comparison with CLEAN, realistic thermal noise was added to the
simulated visibilities but gain calibration errors, random atmospheric phases, and blurring due to interstellar scattering were all neglected.
The images were convolved with scaled versions of the fitted clean beam. The minimum for each NRMSE curve indicates the optimal
restoring beam, which is significantly smaller for MEM (25% of nominal) than for CLEAN (0.78% of nominal).
(Right) Example reconstructions restored with scaled beams from curves in the left panel. The center-left panels are the MEM and CLEAN
reconstructions restored at the nominal resolution, with the fitted clean beam. The center-right panels show the reconstructions restored
with the optimal beam for the CLEAN reconstruction and the far right panels show both reconstructions restored with the optimal MEM
beam. The CLEAN reconstructions consist of only the CLEAN components convolved with the restoring beam and do not include the
dirty image residuals, as discussed at the end of Section 3.

The results are displayed in Fig. 4. In the left panel, we see that the MEM curve has a minimum in NRMSE at a
significantly smaller beam size than the CLEAN reconstruction, demonstrating MEM’s superior ability to superresolve
source structure over CLEAN. Furthermore, the value of NRMSE from the MEM reconstruction is consistently lower
than from CLEAN for all values of restoring beam size. Most importantly, while the CLEAN curve NRMSE increases
rapidly for restoring beams smaller than the optimal resolution, the MEM image fidelity is relatively una↵ected
by choosing a restoring beam that is too small. Choosing a restoring beam that is too large produces an image
with the same fidelity as the model blurred to that resolution. The right panel of Fig. 4 shows the model image,
the interferometer “clean” beam, and the reconstructions blurred with the clean beam (nominal) and the measured
optimal fractional beams. In addition to lower resolution and fidelity, the CLEAN reconstructions show prominent
striping features from isolated components being restored with the restoring beam.

While Fig. 4 demonstrates that in this case the MEM reconstruction has superior resolution and fidelity to the
CLEAN reconstruction, the optimal restoring beam size for the CLEAN reconstruction is still less than unity. This
result was observed in several similar reconstructions, suggesting that shrinking the restoring beam used in CLEAN
reconstructions to 75% of the nominal fitted beam can enhance resolution without introducing imaging artifacts, at
least on images of compact objects similar to those used in these tests.

Repeating the exercise of Fig. 4 with observations taken with increased or decreased signal-to-noise ratio resulted
in NRMSE curves that are only slightly higher and lower than the curves in Fig. 4, but shared the same form - in
particular, the location of the minimum NRMSE values was barely shifted. This insensitivity to additional noise is

7 http://casa.nrao.edu/docs/TaskRef/clean-task.html
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Chael+2016 ApJ Akiyama+2016b,c, 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L1 regularization (LASSO, Tibishirani 1996)
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Approach 1: Sparse Reconstruction 
L1 regularization (LASSO, Tibishirani 1996)

Convex Relaxation: Relaxing L0-norm to a convex, continuous, 
        and differentiable function

- Reconstruction purely in the visibility domain: 
     Not affected by de-convolution beam (point spread function) 

- Many applications after appearance of Compressed Sensing 
(Donoho, Candes+)

equivalent Chi-square Regularization 
on sparsity
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Approach 1: Sparse Reconstruction 
Application of LASSO (Honma et al. 2014)

(Honma, Akiyama, Uemura & Ikeda 2014, PASJ)
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Approach 1: Sparse Reconstruction 
For Smoother Image: sparsity on gradient domain

L1 + TV regularization (Akiyama et al. 2016b,c, Kuramochi+ in prep.)

Total Variation: Sparse regularizer of the image in its gradient domain

(Sgr A*; Kuramochi, Akiyama, et al. in prep.)



Kazunori Akiyama, NEROC Symposium: Radio Science and Related Topics, MIT Haystack Observatory, 11/04/2016

Approach 1: Sparse Reconstruction 
For Smoother Image: sparsity on gradient domain

L1 + TV regularization (Akiyama et al. 2016b,c, Kuramochi+ in prep.)

Total Variation: Sparse regularizer of the image in its gradient domain

(Sgr A*; Kuramochi, Akiyama, et al. in prep.)
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Approach 2: Maximize the Information Entropy
Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)
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MEM algorithm with full visibility phase information, directly minimizing Eq 4 with the �2 term in Eq. 5. This choice,
while infeasible in practice due to phase errors, allowed us to directly compare to CLEAN without introducing the
need for self-calibration.

After obtaining MEM and CLEAN reconstructions from the same data, we convolved the reconstructed images with a
sequence of Gaussian beams scaled from the elliptical Gaussian fitted to the Fourier transform of the u, v coverage (the
“clean beam”). We then computed the normalized root-mean-square error (NRMSE) of each restored image:
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where I0 is the final restored image and I is the true image. For the CLEAN reconstructions, we chose not to add the
dirty image residuals back to the convolved model, as the residuals are a sensible quantity only for the full restoring
beam. To minimize the e↵ect of this choice on the CLEAN reconstruction, we chose a compact model image with no
di↵use structure. After tuning our CLEAN reconstruction for this image, the total flux left in the residuals was less
than 2% of the total image flux. In performing the CLEAN reconstruction, we used Briggs weighting and a loop gain
of 0.025, with the rest of the parameters set to the default in the algorithm’s CASA implementation 7.

Figure 4. (Left) Normalized root-mean-square error (NRMSE, Eq. 17) of MEM and CLEAN reconstructed Stokes I images as a function
of the fractional restoring beam size. For comparison, the NRMSE of the model image is also plotted. The reconstructed images were
produced using simulated data from the EHT array; for straightforward comparison with CLEAN, realistic thermal noise was added to the
simulated visibilities but gain calibration errors, random atmospheric phases, and blurring due to interstellar scattering were all neglected.
The images were convolved with scaled versions of the fitted clean beam. The minimum for each NRMSE curve indicates the optimal
restoring beam, which is significantly smaller for MEM (25% of nominal) than for CLEAN (0.78% of nominal).
(Right) Example reconstructions restored with scaled beams from curves in the left panel. The center-left panels are the MEM and CLEAN
reconstructions restored at the nominal resolution, with the fitted clean beam. The center-right panels show the reconstructions restored
with the optimal beam for the CLEAN reconstruction and the far right panels show both reconstructions restored with the optimal MEM
beam. The CLEAN reconstructions consist of only the CLEAN components convolved with the restoring beam and do not include the
dirty image residuals, as discussed at the end of Section 3.

The results are displayed in Fig. 4. In the left panel, we see that the MEM curve has a minimum in NRMSE at a
significantly smaller beam size than the CLEAN reconstruction, demonstrating MEM’s superior ability to superresolve
source structure over CLEAN. Furthermore, the value of NRMSE from the MEM reconstruction is consistently lower
than from CLEAN for all values of restoring beam size. Most importantly, while the CLEAN curve NRMSE increases
rapidly for restoring beams smaller than the optimal resolution, the MEM image fidelity is relatively una↵ected
by choosing a restoring beam that is too small. Choosing a restoring beam that is too large produces an image
with the same fidelity as the model blurred to that resolution. The right panel of Fig. 4 shows the model image,
the interferometer “clean” beam, and the reconstructions blurred with the clean beam (nominal) and the measured
optimal fractional beams. In addition to lower resolution and fidelity, the CLEAN reconstructions show prominent
striping features from isolated components being restored with the restoring beam.

While Fig. 4 demonstrates that in this case the MEM reconstruction has superior resolution and fidelity to the
CLEAN reconstruction, the optimal restoring beam size for the CLEAN reconstruction is still less than unity. This
result was observed in several similar reconstructions, suggesting that shrinking the restoring beam used in CLEAN
reconstructions to 75% of the nominal fitted beam can enhance resolution without introducing imaging artifacts, at
least on images of compact objects similar to those used in these tests.

Repeating the exercise of Fig. 4 with observations taken with increased or decreased signal-to-noise ratio resulted
in NRMSE curves that are only slightly higher and lower than the curves in Fig. 4, but shared the same form - in
particular, the location of the minimum NRMSE values was barely shifted. This insensitivity to additional noise is

7 http://casa.nrao.edu/docs/TaskRef/clean-task.html

(Chael et al. 2016, ApJ)

- Compared with CLEAN:  
(1) Better fidelity for Smooth Structure   (2)  Better optimal resolution     
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Approach 2: Maximize the Information Entropy
Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

- PolMEM: Extension of MEM to full-polarimetric Imaging 
(Chael+16)14 Chael et al.

Figure 9. (Top) 1.3-mm MEM reconstructions of a magnetically arrested disk simulation of the Sgr A* accretion flow, courtesy of Jason
Dexter (Dexter 2014). Color indicates Stokes I flux and ticks marking the direction of linear polarization are plotted in regions with I
greater than 4⇥ its RMS value and |P | greater than 2⇥ its RMS value. After blurring the image with the Sgr A* scattering kernel at
1.3 mm, data were simulated with realistic thermal noise, amplitude calibration errors, and random atmospheric phases. The center right
panel shows a reconstruction with data simulated on EHT baselines expected in 2016 and the rightmost panel shows the reconstruction
with the full array expected in 2017. Each reconstruction was restored with a Gaussian beam 1/2 the size of the fitted clean beam (93⇥ 32
µas FWHM in 2016 ; 27⇥ 14 µas FWHM in 2017). For comparison, the center left panel shows the model smoothed to the same resolution
as the 2017 image. (Bottom) 1.3-mm MEM reconstructions of a simulation of the jet in M87, courtesy of Avery Broderick (Broderick &
Loeb 2009; Lu et al. 2014b). Data were simulated on 2016 and 2017 EHT baselines as in the top panel, but without the contributions from
interstellar scattering that are significant for Sgr A⇤. Both reconstructions were restored with a Gaussian beam 1/2 the size of the fitted
clean beam (72⇥ 36 µas FWHM in 2016 ; 28⇥ 20 µas FWHM in 2017).

restoring beam, the I and P NRMSE values drop to 24.0% and 59.0% for the 2016 reconstruction and 19.8% and
61.9% for the 2017 image. The polarization position angle weighted error drops to 20.0� and 21.6� for the 2016 and
2017 images, respectively. Even with minimal baseline coverage, MEM is able to reconstruct a reasonably accurate
image when compared to the true image viewed at the same resolution.

The 2016 image of an M87 jet model (Fig. 9, bottom panel) gave NRMSE values of 55.61% for Stokes I and 77.34%
for Stokes P , with a weighted angular error of 23.5�. In 2017, the NRMSE values were 36.71% for Stokes I and 54.40%
for P , with an angular error of 17.9�. When we instead compare the reconstructions to the model image smoothed to
the same resolution as the restoring beam, the I and P NRMSE values drop to 21.3% and 34.5% for the 2016 image
and 18.3% and 27.7% for the 2017 image, while the polarization position angle weighted error drops to 21.6� and 14.8�

for the 2016 and 2017 images, respectively.

6. CONCLUSION

As the EHT opens up new, extreme environments to direct VLBI imaging, a renewed exploration of VLBI imaging
strategies is necessary for extracting physical signatures from challenging datasets. In this paper, we have shown
the e↵ectiveness of imaging linear polarization from VLBI data using extensions of the Maximum Entropy Method.
We explored extensions of MEM using previously proposed polarimetric regularizers like PNN and adaptations of
regularizers new to VLBI imaging like total variation. We furthermore adapted standard MEM to operate on robust
bispectrum and polarimetric ratio measurements instead of calibrated visibilities. MEM imaging of polarization can
provide increased resolution over CLEAN (Fig. 5) and is more adapted to continuous distributions, as are expected
for the black hole accretion disks and jets targeted by the Event Horizon Telescope. Furthermore, MEM imaging
algorithms can naturally incorporate both physical constraints on flux and polarization fraction as well as constraints
from prior information or expected source structure. Extending our code to run on data from connected-element
interferometers like ALMA is a logical next step, but it will require new methods to e�ciently handle large amount
of data and image pixels across a wide field of view. Polarimetric MEM is also a promising tool for synthesis imaging
of a diversity of other astrophysical systems typically observed with connected element interferometers. For example,
the polarized dust emission from protostellar cores frequently exhibits a smooth morphology (Girart et al. 2006; Hull
et al. 2013), so MEM may be better-suited to study both the large-scale magnetic-field morphologies and their small

(Chael et al. 2016, ApJ)



Kazunori Akiyama, NEROC Symposium: Radio Science and Related Topics, MIT Haystack Observatory, 11/04/2016

Approach 3: Machine-learn Distribution of Image Patches 
A patch prior (CHIRP; Bouman et al. 2015)

Simple Example

(courtesy of Katie Bouman)
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Approach 3: Machine-learn Distribution of Image Patches 
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Simple Example Probability Distribution
of  “Multi-scale Patches”

Can be used as 
“A Prior Knowledge”
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CHIRP: Continuous High Image Resolution using Patch priors  
Reconstruct the image so that it maximizes consistency

with a machine-leaned patch prior distribution

(courtesy of Katie Bouman)
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Courtesy of Kazunori Akiyama Jason Dexter, MonikaMoscibrodzka,  Avery Brodrick, Hotaka Shiokawa  
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 Summary

• All state-of-the-art imaging techniques developed for the EHT 
have shown much better performance than the traditional CLEAN.

• These techniques can be applied to any existing interferometers

• These techniques would be applicable to similar Fourier-inverse problems 
 (e.g. )   Faraday Tomography (RM Synthesis) 
                Mostly equivalent to linear polarimetric imaging

M87 jets (Application to VLBA data)

- Color: CLEAN (3mm) 

- Lines: Sparse Modeling (7mm)


