Discovering Milky Way Hn Regions

Tom Bania

Institute for Astrophysical Research Department of Astronomy Boston University

GBT HRDS

Green Bank Telescope HII Region Discovery Survey AO HRDS

Arecibo Observatory HII Region Discovery Survey SHRDS

Southern HII Region Discovery Survey

Milky Way H II Regions

HII regions are zones of ionized gas surrounding O and B type stars (Masses > 8 M_{\odot})

• Lifetimes <10 Myr

 \rightarrow Trace star formation at present epoch

- Emit at radio wavelengths via Bremsstrahlung (free-free) continuum and radio recombination line (RRL) emission
- \rightarrow Thermal plasma emission mechanisms
- Emit at infrared (IR) due to presence of dust
- → The brightest objects in the Galaxy at radio and IR wavelengths!

The signature of HII regions is a high IR and radio flux

H II Regions and Galaxies

The GBT Galactic H II Region Discovery Survey

T.M. Bania (Boston University),

L. D. Anderson (West Virginia University)

Dana S. Balser (NRAO), and Robert T. Rood (University of Virginia)

GBT HRDS Collaborators Normalized to Age 30

Loren Anderson (West Virginia University) **Tom Bania** (Boston University)

Dana Balser (NRAO)

Bob Rood (University of Virginia)

H II Region Surveys

Eagle Nebula NGC 6611 M 16 S 49 RCW 165 Gum 83 "Pillars of Creation"

Radio Continuum Surveys

Dwingeloo 25 m telescope 1390 MHz

Westerhout (1958)

Radio Recombination Lines (RRLs)

Frequency Hoglund & Mezger (1965)

Radio Wavelength Sky Surveys

Continuum surveys began in the 1950s Recombination line surveys began in the 1960s

H II Region Evolution

H II Region Case Studies

RGB \rightarrow 24, 8, 3.6 microns

RGB \rightarrow 8, 4.5, 3.6 microns

Spitzer IR MAGPIS 20cm (white contour) GRS ¹³CO (green contour)

GBT H II Region Discovery Survey

GBT HRDS

Coincident 24 μ m and 20 cm Flux > 100 mJy @ 20 cm -16° < ℓ < + 67° and -1° < b < 1° H87 α - H93 α (8-10 GHz) HPBW ~ 80 arcsec $\Delta \nu = 12$ kHz ($\Delta v = 0.4$ km s⁻¹)

All HII regions ionized by a single O-type star within the Solar orbit

GBT HRDS RRL Composite Spectra

5

GBT HRDS RRL Composite Spectra

5

HRDS H II Regions

Map of Milky Way H II Regions

Southern HI Region Discovery Survey

Trey Wenger University of Virginia SHRDS Guru

ATCA Australia Telescope Compact Array

ATCA + CABB-CX

CAAB-CX

Compact Array Broadband Backend

- Two 2 GHz wide bands can be placed anywhere between 4.1 and 10.4 GHz
- Within these can place 32 'zoom bands' that can have widths of either 64 MHz or 1 MHz
- Zoom Bands have 2048 channels each

Simultaneously observe 20 RRLs with 2 orthogonal polarizations Stacking these improves SNR ~ 5 x

SHRDS

Last HII region survey of Southern Sky was Caswell & Haynes (1987) using Parkes

SHRDS will discover ~ 500 HII regions

Most will be located at great distances on the far side of the Galactic Centre beyond the Solar Orbit

Outer Scutum – Centarus Arm

L – V Plots are not to be feared: DON'T PANIC !

This is a cartoon. It is not a model. It is not a map.

Benjamin & Hurt have a lot to answer for ...

Resolving the KDA with HIAbsorption

HI Emission/Absorption (HI E/A): Absorption of H II region emission by foreground H I

- HI absorption up to HII region velocity \rightarrow Near
- HI absorption up to tangent point velocity \rightarrow Far

See Kuchar & Bania (1994), Kolpak et al. (2002), Anderson & Bania (2009)

Resolving the Kinematic Distance Ambiguity

Anderson & Bania (2009)

H II Region Electron Temperatures

 $\frac{T_{\rm L}}{T_{\rm C}} \propto T_{\rm e}^{-1.15}$

RRL and free-free continuum emission in LTE at 3 cm

Te is a proxy for the nebular metallicity

Electron Temperature Distribution has Azimuthal Structure !

Sample : GBT + 140 Foot $330^{\circ} \le Az \le 60^{\circ}$

Contours : Range : 6400 – 11200 K Interval : 400 K