Microwave Radiometer calibration with GPS radio occultation for the MiRaTA CubeSat mission

K. Cahoy, MIT AeroAstro W. Blackwell, MIT Lincoln Laboratory A. Marinan, MIT AeroAstro N. Erickson, UMass-Amherst R. Bishop, The Aerospace Corporation T. Neilsen, Space Dynamics Laboratory B. Dingwall, NASA Wallops Flight Facility

November 4, 2016

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored by the National Aeronautics and Space Administration. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Our Ability to Predict the Weather Has Profound Societal and Economic Implications

- The US derives \$32 B of value from weather forecasts annually¹
- Earth observing satellites drive the forecasts
- Eternal quest for resolution: Spatial (vertical and horizontal), temporal, and radiometric

¹University Center for Atmospheric Research

Satellites Provide the Most Forecast Skill

Microwave Atmospheric Sensing

The frequency dependence of atmospheric absorption allows different altitudes to be sensed by spacing channels along absorption lines

New Approach for Microwave Sounding

Enabling the Next Generation: MicroMAS-1, MicroMAS-2, and MiRaTA

MicroMAS = Microsized Microwave Atmospheric Satellite MiRaTA = Microwave Radiometer Technology Acceleration

MicroMAS-1

3U cubesat with 118-GHz radiometer

8 channels for temperature measurements

July 2014 launch, March 2015 release; validation of spacecraft systems; eventual transmitter failure

MicroMAS-2

3U cubesat scanning radiometer with channels near 90, 118, 183, and 206 GHz

12 channels for moisture and temperature profiling and precipitation imaging

Two launches in 2017

MiRaTA

3U cubesat with 60, 183, and 206 GHz radiometers and GPS radio occultation

10 channels for temperature, moisture, and cloud ice measurements

Early 2017 launch on JPSS-1

Next Generation: Constellations

MicroMAS = Microsized Microwave Atmospheric Satellite

MiRaTA = Microwave Radiometer Technology Acceleration

Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS)

MicroMAS-1	MicroMAS-2	MiRaTA	TROPICS
3U cubesat with 118-GHz	3U cubesat scanning	3U cubesat with 60, 183,	Selected for EVI-3
radiometer	radiometer with channels near 90, 118, 183, and 206	and 206 GHz radiometers and GPS radio	12 CubeSats (3U) in three orbital planes (600km/30°)
measurements	12 channels for moisture	10 channels for	Temperature and moisture profiling and cloud ice
2015 release; validation of spacecraft systems;	and temperature profiling and precipitation imaging	and cloud ice measurements	30-minute revisit
<section-header></section-header>	Two launches in 2017	Early 2017 launch on JPSS-1	2019/2020 launch

<u>Microwave Ra</u>diometer <u>T</u>echnology <u>A</u>cceleration (MiRaTA)

- 3U (10 cm x 10 cm x 34 cm) tri-band radiometer
 - Temperature, water vapor, and cloud ice
 - ~60 GHz (temperature)
 - ~183 GHz (humidity)
 - ~207 GHz (cloud ice)
 - Absolute calibration better than 1 K
- Calibration proof of concept using limb measurements and GPS-RO
 - 60, 183, and 206 GHz; OEM628 GPS
- Funded by NASA Earth Science Technology Office (ESTO) InVEST program
- ~30-month build
- Launch in early 2017 (JPSS-1)
 - Permits direct comparisons with ATMS

- 4.5 kg total mass
- 10 W avg power
- 10 kbps max data rate
- 0.5° pointing accuracy

TRL Advancement Criteria (TRL 5 to 7)

• (1) IF spectrometer

- Verify that the V-band radiometric accuracy is within 1.5 K of the truth predictions
- V-band end-to-end receiver temperature sufficient to yield 0.1K NEdT.
- Blackwell ACT10 "Hyperspectral Microwave Receiver" IFP module leveraged here

• (2) G-band mixer

- 2.0 K radiometric accuracy against ground truth predictions
- End-to-end receiver temperature sufficient to yield 0.25 K NEdT.
- Blackwell ACT10 "Hyperspectral Microwave Receiver" mixer module leveraged here

• (3) GPS-RO receiver

Evaluate GPS-RO temperature retrievals are within 1.5 K of the truth predictions
Truth measurements consist of combination of radiosondes and NWP measurements coupled with radiative transfer model

Direct radiance comparisons with operational passive microwave sounders will also be utilized for verification

Nominal Sci Ops for Coupled Atmospheric GPSRO & Microwave Radiometry

MiRaTA Pitch-Up Maneuver

Objective:

Collocate radiometric data and GPS RO temperature profile

Annie Marinan (MIT SSL) & Weston Marlow

Credit:

(G95 & SSL)

GPS-RO Opportunities for One Day

Setting GPS satellite, < 25 km tangent height

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MiRaTA Sensor Viewing Geometries

MiRaTA Spacecraft Overview

MiRaTA Space Vehicle Overview

Systems: MiRaTA System Block Diagram

Bus Flight Hardware

Radiometer Payload: Block Diagram

MiRaTA Radiometer System

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Radiometer Flight Hardware

NEROC- 21 KLC, ADM, WJB 11/4/2016 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Provided by Aerospace Corp. to retrieve temperature profiles using GPS radio occultation (Dr. Rebecca Bishop)
- Aerospace performed TVac testing, vibration testing, & onorbit simulations
- Delivered flight and flight spare in Mar. 2016

Measurement Requirements and Enabling Technologies

Temperature profile uncertainty of 2 K (RMS) in 50 km footprint needed to improve forecast accuracy

Six or more channels

Ultracompact spectrometer funded by NASA ESTO (ACT-10)

Low-temperature co-fired ceramic filters

Operation from 18-29 GHz

Sensitivity better than 0.3 K (RMS)

Receiver front-end electronics developed by UMass-Amherst

MMIC low-noise amplifiers and electronic calibration

Calibration accuracy better than 1 K (RMS)

Noise diode source provides periodic absolute calibration of radiometer

Highly stable; compact

Aperture ~9 cm Beam efficiency > 95%

Offset parabolic reflector system with scalar feed

Lightweight, with 0.001" RMS surface tolerance

Channel Properties for MiRaTA Radiometers

Channel ID	Туре	Center Frequency (GHz)	Bandwidth (MHz)	Weighting Function Peak Height (km)
V1		50.30	180	0
V2		51.76	400	0
V3		52.80	400	2
V4	Single Side	53.50	600	5
V5	Band	54.40	400	8
V6		54.94	400	11
V7		55.50	330	13
V8		56.65	600	18
G1		183.31 ± 1	500	7
G2	Double Side	183.31 ± 3	1000	4
G3	Band	183.31 ± 5	2000	2
G4		204.8	2000	1

Advantage of Limb Comparisons

MiRaTA Product Validation Approach

Approach – Co-located Radiometer and GPSRO

- Want to calibrate radiometer data using overlapping GPSRO measurements
- Execute a slow pitch (~ 0.5°/sec) maneuver once per orbit with a goal of obtaining > 100 spatially and temporally coincident radiometer and GPSRO scans of Earth's limb over a 90-day mission.
- For absolute radiometer calibration accuracy better than 0.25 K (50-60 GHz band), need:
 - GPSRO temperature precision better than 1.5 K (0.5 K goal)
 - GPSRO penetration to 20 km tangent height within 100 km of radiometer boresight

MiRaTA GPSRO Data Processing Flow

Figure 1: Ground processing and validation flow for the MiRaTA mission data products NEROC- 28 KLC, ADM, WJB 11/4/2016 MASSACHUSETTS 1

- Based on method presented by Hajj et al., 2002
 - Kursinski, 1997
 - Hinson, 2010

Note: Radiometer calibration calculations done by Lincoln Laboratory

- Antenna Gain: 9.7 dB (L1), 9.4 dB (L2)
- From the receiver datasheet, 0.5 mm phase precision at 20 Hz

$$\langle \delta \phi(\tau)^2 \rangle^{\frac{1}{2}} = \frac{\lambda}{2\pi} (2SNR_0\tau)^{-\frac{1}{2}}$$

 $\langle \delta \phi^2 \rangle^{\frac{1}{2}}$ is the rms phase error (units of length)

 λ is the sampling frequency (L1 or L2)

au is the integration time

 SNR_0 (W/W) is the power signal to noise ratio based on a 1-second integration time $(SNR_0 = SNR_{\nu_0}^2)$, where SNR_{ν_0} is the voltage signal to noise ratio in a vacuum)

The 1-second L1 SNRv of the receiver is 271 V/V (174 V/V for L2)

- From free-space SNR and atmospheric loss, calculate Fresnel zone (~1.4 km)
- Determine time it takes for signal to travel one Fresnel zone
- Recalculate phase precision based on integration time

For the receiver SNR_{v_0} the average Fresnel zone value for MiRaTA is 1.4 km.

The average integration time for the MiRaTA orbit (440 km x 811 km) is 0.5s This corresponds to a 0.16 mm phase precision (0.32 mm for L2)

 $T = 2Z_F / V = \text{ integration time}$ $Z_F = \text{ Fresnel zone diameter}$ $\lambda = \text{ sampling wavelength}$ $D_t = \text{ distance from tangent point to Tx}$ $D_r = \text{ distance from tangent point to Rx}$ V = vertical rate of link

Doppler

precision

(dual-f)

 Doppler noise calculated from phase precision

$$\sigma_{Doppler} = \frac{\sigma_{\phi}\sqrt{12}}{\Delta N^{3/2}}$$
$$\sigma_{\alpha} = \frac{\lambda \sigma_{Doppler}}{V_0}$$
$$\sigma_{\alpha_{neut}}^2 = (2.54)^2 \sigma_{\alpha_1}^2 + (1.54)^2 \sigma_{\alpha_2}^2$$

 Neutral bending angle calculation takes into account both L1 and L2

Integration

time

Fresnel

Diameter

Phase

precision

This Paper

SNRv

CTAGS Antenna gain pattern, Receiver Noise

Parameters

NEROC- 32 KLC, ADM, W C/NO

- Abel transform converts bending angle to atmospheric refractivity
- Bending angle (exponential with height) represented with power-law approximation
- Abel transform of power law has analytic solution
- Calculate contribution of numerical calculation to retrieval error
 - Several orders of magnitude below expected measurement errors

$$\ln \mu_j = \frac{1}{\pi} \int_{a_j}^{\infty} \frac{\theta(a) da}{\sqrt{a^2 - a_j^2}}$$

 θ = bending angle

a = impact factor

- From refractivity, get air density
 - Integrate density to get pressure
 - Ideal gas law for temperature
- Propagate bending angle error through all calculations to derive temperature error
 - Best-fit: ~0.5 degrees at 20 km
 - 95% confidence: 0.1 1.7 degrees at 20 km

Path Forward (MiRaTA)

- Identify how many overlapping observations we can acquire over the mission lifetime (mission requirement: 100)
 - Preliminary results (over 3 months)
 - > 500 overlapping accesses
 - 5-6 opportunities per day
 - MiRaTA ADCS driving additional satellite rotation that may impact the total number of overlapping occultations
- Estimate how many might fall within required temperature precision (most likely a Monte Carlo approach)

CubeSat GPSRO – Global Coverage Approach

External Input: GPSRO antenna 60 deg HPBW

Access Opportunities for GPSRO by Orbit

- Percent Time with >= 4 GPS Satellites in View
 - Driven by requirement for position knowledge and reference satellites
- Total number of occultation opportunities
 - Assuming 60 degree HPBW receiving antenna field of view
- Analysis run over 3 months (Jan Apr 2016) across tradespace of orbit parameters

	400 km	500 km	600 km	700 km
0°	80%	84%	87%	89%
30°	60%	63%	66%	69%
60°	62%	65%	68%	71%
98°	69%	72%	75%	77%

0° 36820 35530 36570 36180 30° 31150 31830 32330 32510 60° 33480 35190 35600 34490 98° 38780 39560 39990 40240

500 km

600 km

400 km

%Time (out of 3 months) with 4 GPS satellites in view

Number of GPS RO occultation opportunities below 200 km tangent height

In general, equatorial or polar orbits (i.e. not mid-latitude) offer more GPS access and occultation opportunities

700 km

Revisits, Multiple GPSRO Satellites per Plane

Testing Overview

ADCS Testing Overview

Space Vehicle Fit Checks

Volume & mass risks are low, but with slim margins

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MiRaTA Manifested on ELaNa 14

- Launch on a Delta II with JPSS-1
- Inclination 97.73 degrees
- Orbit ~811km x ~440km
- LTAN 13:20:35
- JPSS-1 launch in Jan. 2017

MiRaTA Key Dates

Milestone	Date	
Award "Start"	Dec. 20, 2013	
NSSC Approval	Feb. 12, 2014	
Funds distributed	Mar. 14, 2014	
Project Kickoff with Subs	Apr. 2014	
System Requirements Review	June 2, 2014	
System PDR	Oct. 22, 2014	
System CDR	June 1-3, 2015	
Flight-ready Spacecraft Integrated	<i>Oct.</i> 26, 2016	
Deadline to complete testing reports	Nov. 11, 2016	
Mission Readiness Review	Dec. 6, 2016	
CubeSatDelivery	Jan. 10, 2017	
Launch	March, 2017*	

* ELaNa-XIV launch with JPSS-1

- MiRaTA will provide multi-band radiometry and GPS-RO in a single 3U cubesat
 - Temperature, moisture, and cloud ice with high absolute accuracy
- Flight hardware build is complete, system testing underway
- TVAC complete, currently undergoing vibration and shock test
- March 2017 launch on JPSS-1
- MiRaTA is a critical pathfinder for the TROPICS constellation
 - Multi-band radiometry
 - Electronic calibration
 - Spacecraft maneuvers for mission capability

VDI 183X6DSHMR1 1-04 Performance

