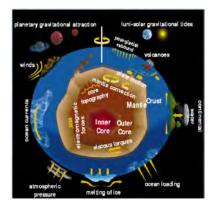
Improved space geodesy through advanced technology and techniques

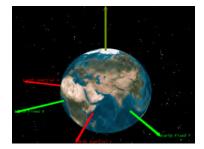
Dhiman R. Mondal¹, Pedro Elosegui¹, Chester Ruszczyk¹, James Davis²

MIT Haystack Observatory
Lamont-Doherty Earth Observatory


November 1, 2019

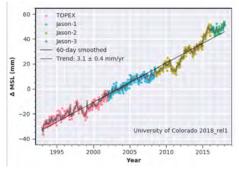
With thanks to many at Haystack (Barrett, Burns, Cappallo, Corey, Eckert, Niell, Poirier, Rajagopalan, SooHoo, Titus, ...) and beyond

What is Geodesy?


- The science of Earth's shape, rotation, and gravity, including their evolution in time
 - Shape Plate motions, Solid Earth tides, Loading phenomena, Earthquake and Volcano
 - Rotation Nutation, Precession, Polar Motion, UT1
 - Gravity Mass distribution
- Continuous and robust global geodetic monitoring is key

Terrestrial Reference Frames (TRF)

- A realization of Earth's origin, orientation axes and scale, and their time evolution
- Four space geodetic techniques are used
- Foundation for all Earth science observations in space geodesy


VI BI¹

1. Very Long Baseline Interferometry 2. Satellite Laser Ranging 3. Global Navigation Satellite Systems 4. Doppler Orbitography and Radiopositioning Integrated by Satellite

Why does TRF accuracy matter?

An example of scientific-societal significance

- Altimetry satellites monitor global mean sea-level rise
- Satellites need precise orbits computed in a TRF
- Reference frame is a significant contributor to the (±0.4 mm/yr) sea-level rate error
- Sea-level requirement on TRF accuracy is 1 mm (position) and 0.1 mm/yr (rate)

Haystack Geodesy Research

Developing advanced technologies and methods to improve the accuracy of the TRF

- Technology Develop new broadband VLBI Global Observing System (VGOS) stations
 - ▶ Both hardware and software
- Techniques Tie collocated stations at geodetic core sites (a site with multiple geodetic techniques)

Advanced Technology

VGOS virtues (vs. "legacy") in a nutshell

міт

Legacy (20 m)

Advanced Technology (cont.)

VGOS Station

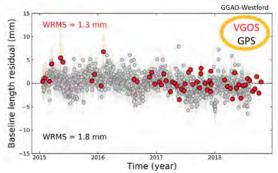

HAYSTACK OBSERVATORY

MIT

Advanced Technology (cont.)

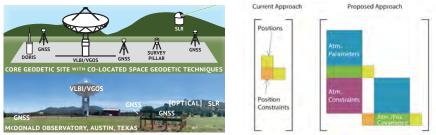
VGOS (vs "Legacy") observable error

- VLBI observable error proportional to 1/bandwidth
- VGOS bandwidth is about 10 times larger than legacy
- VGOS formal error is about 10 times smaller than legacy, as expected



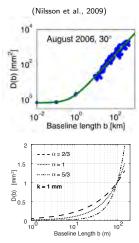
Advanced Technology (cont.)

VGOS and GPS baseline-length repeatability


 Scatter of baseline-length estimates from VGOS is similar to GPS, if not better

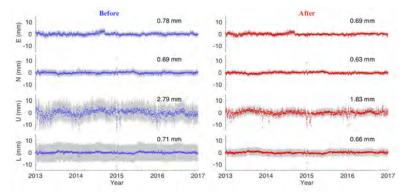
Advanced Technology (cont.) and Techniques

Inter-technique ties at a geodetic core site


- Measuring local ties is a challenge for some techniques
- Tie uncertainties for 60% of the collocation sites are more than 5 mm
- But stations at core sites share the same atmosphere, hence new ties can be achieved via atmospheric constraints

Advanced Techniques (cont.)

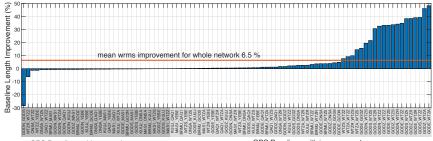
Constraints on atmospheric parameters



(This Study)

Advanced Techniques (cont.)

Improving relative site positions for local stations (e.g., at Wettzell)



Baseline-components scatter improves when applying atmospheric ties

Advanced Techniques (cont.)

Improving the Terrestrial Reference Frame (TRF)

GPS Baselines without any improvement

GPS Baselines with improvement

Baseline-length scatter improves when applying atmospheric ties

- Geodetic science and applications such as sea-level monitoring are of paramount societal relevance
- Robust global sea-level estimates require a TRF accurate at the 0.1 mm/yr level
- Haystack is advancing broadband VLBI (VGOS) technology to meet this challenge
- Haystack is also advancing new data-based methods to improve the TRF accuracy

