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Radio Interferometry:  
Sampling Fourier Components of the Images
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(Images: adapted from Akiyama et al. 2015,  ApJ ; Movie: Laura Vertatschitsch)

Sampling is NOT perfect

Image Fourier Domain  
(Visibility)

Sampling Process
(Projected Baseline = Spatial Frequency)
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Interferometry Imaging:  
Observational equation is ill-posed
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: :

xN- Sampling is NOT perfect  
  Number of data M < Number of image pixels N 

- Interferometric Imaging: 
  Picking a reasonable solution based on a prior assumption

- Equation is ill-posed: infinite numbers of solutions
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(Fourier Matrix)
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Sparse Reconstruction: CLEAN (greedy approach) 
CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

Philosophy: Reconstructing images with the smallest number 
             of point sources within a given residual error
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Dirty map: 
FT of zero-filled

Visibility

Point Spread Function: 
Dirty map  

for the point source

Solution:
Point sources 

+ Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)

Sparse Reconstruction: CLEAN (greedy approach) 
CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)
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Philosophy: Reconstructing images with the smallest number 
             of point sources within a given residual error
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MEM algorithm with full visibility phase information, directly minimizing Eq 4 with the �2 term in Eq. 5. This choice,
while infeasible in practice due to phase errors, allowed us to directly compare to CLEAN without introducing the
need for self-calibration.

After obtaining MEM and CLEAN reconstructions from the same data, we convolved the reconstructed images with a
sequence of Gaussian beams scaled from the elliptical Gaussian fitted to the Fourier transform of the u, v coverage (the
“clean beam”). We then computed the normalized root-mean-square error (NRMSE) of each restored image:

NRMSE =

vuut
Pn2

i=1 |I 0i � Ii|2
Pn2

i=1 |Ii|2
, (17)

where I0 is the final restored image and I is the true image. For the CLEAN reconstructions, we chose not to add the
dirty image residuals back to the convolved model, as the residuals are a sensible quantity only for the full restoring
beam. To minimize the e↵ect of this choice on the CLEAN reconstruction, we chose a compact model image with no
di↵use structure. After tuning our CLEAN reconstruction for this image, the total flux left in the residuals was less
than 2% of the total image flux. In performing the CLEAN reconstruction, we used Briggs weighting and a loop gain
of 0.025, with the rest of the parameters set to the default in the algorithm’s CASA implementation 7.

Figure 4. (Left) Normalized root-mean-square error (NRMSE, Eq. 17) of MEM and CLEAN reconstructed Stokes I images as a function
of the fractional restoring beam size. For comparison, the NRMSE of the model image is also plotted. The reconstructed images were
produced using simulated data from the EHT array; for straightforward comparison with CLEAN, realistic thermal noise was added to the
simulated visibilities but gain calibration errors, random atmospheric phases, and blurring due to interstellar scattering were all neglected.
The images were convolved with scaled versions of the fitted clean beam. The minimum for each NRMSE curve indicates the optimal
restoring beam, which is significantly smaller for MEM (25% of nominal) than for CLEAN (0.78% of nominal).
(Right) Example reconstructions restored with scaled beams from curves in the left panel. The center-left panels are the MEM and CLEAN
reconstructions restored at the nominal resolution, with the fitted clean beam. The center-right panels show the reconstructions restored
with the optimal beam for the CLEAN reconstruction and the far right panels show both reconstructions restored with the optimal MEM
beam. The CLEAN reconstructions consist of only the CLEAN components convolved with the restoring beam and do not include the
dirty image residuals, as discussed at the end of Section 3.

The results are displayed in Fig. 4. In the left panel, we see that the MEM curve has a minimum in NRMSE at a
significantly smaller beam size than the CLEAN reconstruction, demonstrating MEM’s superior ability to superresolve
source structure over CLEAN. Furthermore, the value of NRMSE from the MEM reconstruction is consistently lower
than from CLEAN for all values of restoring beam size. Most importantly, while the CLEAN curve NRMSE increases
rapidly for restoring beams smaller than the optimal resolution, the MEM image fidelity is relatively una↵ected
by choosing a restoring beam that is too small. Choosing a restoring beam that is too large produces an image
with the same fidelity as the model blurred to that resolution. The right panel of Fig. 4 shows the model image,
the interferometer “clean” beam, and the reconstructions blurred with the clean beam (nominal) and the measured
optimal fractional beams. In addition to lower resolution and fidelity, the CLEAN reconstructions show prominent
striping features from isolated components being restored with the restoring beam.

While Fig. 4 demonstrates that in this case the MEM reconstruction has superior resolution and fidelity to the
CLEAN reconstruction, the optimal restoring beam size for the CLEAN reconstruction is still less than unity. This
result was observed in several similar reconstructions, suggesting that shrinking the restoring beam used in CLEAN
reconstructions to 75% of the nominal fitted beam can enhance resolution without introducing imaging artifacts, at
least on images of compact objects similar to those used in these tests.

Repeating the exercise of Fig. 4 with observations taken with increased or decreased signal-to-noise ratio resulted
in NRMSE curves that are only slightly higher and lower than the curves in Fig. 4, but shared the same form - in
particular, the location of the minimum NRMSE values was barely shifted. This insensitivity to additional noise is

7 http://casa.nrao.edu/docs/TaskRef/clean-task.html
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7 http://casa.nrao.edu/docs/TaskRef/clean-task.html

Chael+2016 ApJ Akiyama+2017a, ApJ
Akiyama+2017b, AJ

Fabian Baron, 
EHT 2012

Event Horizon Telescope Conference – 20 January 2012
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CLEAN is problematic for the black hole shadows?

Ground 
Truth

CLEAN

Sparse Reconstruction: CLEAN (greedy approach) 
CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)
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Michael Johnson
(SAO Astronomy)

EHT Imaging: Fusion of Young Powers & Divergence

Shiro Ikeda
ISM Statistical 
Mathematics

Fumie Tazaki
NAOJ Astronomy

Kazuki Kuramochi
U. Tokyo Astronomy

Marki Honma 
NAOJ  

Astronomy
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Approach 1: Sparse Modeling (Compressed Sensing)
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Chisquare L1 norm

Regularizing the sparsity 
on the gradient domain 

Total Variation:

Honma+2014
Akiyama+2017a,b
Kuramochi+2017 
submitted to ApJ

Regularization 
on sparsity
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Approach 2: Maximize the Information Entropy
Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

9

14 Chael et al.

Figure 9. (Top) 1.3-mm MEM reconstructions of a magnetically arrested disk simulation of the Sgr A* accretion flow, courtesy of Jason
Dexter (Dexter 2014). Color indicates Stokes I flux and ticks marking the direction of linear polarization are plotted in regions with I
greater than 4⇥ its RMS value and |P | greater than 2⇥ its RMS value. After blurring the image with the Sgr A* scattering kernel at
1.3 mm, data were simulated with realistic thermal noise, amplitude calibration errors, and random atmospheric phases. The center right
panel shows a reconstruction with data simulated on EHT baselines expected in 2016 and the rightmost panel shows the reconstruction
with the full array expected in 2017. Each reconstruction was restored with a Gaussian beam 1/2 the size of the fitted clean beam (93⇥ 32
µas FWHM in 2016 ; 27⇥ 14 µas FWHM in 2017). For comparison, the center left panel shows the model smoothed to the same resolution
as the 2017 image. (Bottom) 1.3-mm MEM reconstructions of a simulation of the jet in M87, courtesy of Avery Broderick (Broderick &
Loeb 2009; Lu et al. 2014b). Data were simulated on 2016 and 2017 EHT baselines as in the top panel, but without the contributions from
interstellar scattering that are significant for Sgr A⇤. Both reconstructions were restored with a Gaussian beam 1/2 the size of the fitted
clean beam (72⇥ 36 µas FWHM in 2016 ; 28⇥ 20 µas FWHM in 2017).

restoring beam, the I and P NRMSE values drop to 24.0% and 59.0% for the 2016 reconstruction and 19.8% and
61.9% for the 2017 image. The polarization position angle weighted error drops to 20.0� and 21.6� for the 2016 and
2017 images, respectively. Even with minimal baseline coverage, MEM is able to reconstruct a reasonably accurate
image when compared to the true image viewed at the same resolution.

The 2016 image of an M87 jet model (Fig. 9, bottom panel) gave NRMSE values of 55.61% for Stokes I and 77.34%
for Stokes P , with a weighted angular error of 23.5�. In 2017, the NRMSE values were 36.71% for Stokes I and 54.40%
for P , with an angular error of 17.9�. When we instead compare the reconstructions to the model image smoothed to
the same resolution as the restoring beam, the I and P NRMSE values drop to 21.3% and 34.5% for the 2016 image
and 18.3% and 27.7% for the 2017 image, while the polarization position angle weighted error drops to 21.6� and 14.8�

for the 2016 and 2017 images, respectively.

6. CONCLUSION

As the EHT opens up new, extreme environments to direct VLBI imaging, a renewed exploration of VLBI imaging
strategies is necessary for extracting physical signatures from challenging datasets. In this paper, we have shown
the e↵ectiveness of imaging linear polarization from VLBI data using extensions of the Maximum Entropy Method.
We explored extensions of MEM using previously proposed polarimetric regularizers like PNN and adaptations of
regularizers new to VLBI imaging like total variation. We furthermore adapted standard MEM to operate on robust
bispectrum and polarimetric ratio measurements instead of calibrated visibilities. MEM imaging of polarization can
provide increased resolution over CLEAN (Fig. 5) and is more adapted to continuous distributions, as are expected
for the black hole accretion disks and jets targeted by the Event Horizon Telescope. Furthermore, MEM imaging
algorithms can naturally incorporate both physical constraints on flux and polarization fraction as well as constraints
from prior information or expected source structure. Extending our code to run on data from connected-element
interferometers like ALMA is a logical next step, but it will require new methods to e�ciently handle large amount
of data and image pixels across a wide field of view. Polarimetric MEM is also a promising tool for synthesis imaging
of a diversity of other astrophysical systems typically observed with connected element interferometers. For example,
the polarized dust emission from protostellar cores frequently exhibits a smooth morphology (Girart et al. 2006; Hull
et al. 2013), so MEM may be better-suited to study both the large-scale magnetic-field morphologies and their small

(Chael et al. 2016, ApJ)
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Approach 3: Machine-learn Distributions of Image Patches 
A patch prior (CHIRP; Bouman et al. 2015 CVPR)

CHIRP: Continuous High Image Resolution using Patch priors  
Reconstruct the image so that it maximizes consistency

with a machine-learned patch prior distribution

Courtesy of Kazunori Akiyama Jason Dexter, MonikaMoscibrodzka,  Avery Brodrick, Hotaka Shiokawa  
 

GROUND TRUTH

CHIRP

BLURRED
GROUND TRUTH

(courtesy of Katie Bouman)
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 Application to Real Data: Protoplanetary Disk
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CLEAN (従来法) のイメージ結果

分解能: 0.51”×0.44”

CLEANは超解像領域で人工的な構造を多く作り出す。

短基線データ 
2015.100425.S  (PI. A. Kataoka)

約3倍の高分解能: 0.20”×0.15” 分解能: 0.20”×0.15”

長基線データ 
2012.1.00631.S (PI. Fukagawa)

前提：長基線データによるCLEANイメージが分解能 0.20”×0.15” で円盤構造を正しく復元していると仮定する。

CLEAN (従来法) 超解像領域 
“CLEAN”

高分解能観測
CLEAN

天文学におけるデータ科学的方法　山口正行 17　
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Superresolution 
(same to the intermediate configuration)

Fukagawa et al. in prep.Kataoka et al. 2016, ApJ

(Yamaguchi, Akiyama, & Kataoka et al. in prep.)

ALMA Observations of Protoplanetary Disk HD 142527 (345 GHz)
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 Application to Real Data: Radio Stars
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(Matthews et al. in prep.)

Resolving Asymmetric Shape & Temperature Distribution 
 of Stellar Photosphere with JVLA

scatter in their data may have led to amplitude losses as high as
∼30%. Nonetheless, even accounting for this effect, as well as
uncertainties in the absolute flux density scale of up to 20%
(typical of measurements at this frequency), these data and the
earlier measurement of Reid & Menten still appear to be
consistent with a lower 43 GHz flux density for Mira A
compared with our latest measurement.

The measurements of Reid & Menten (2007) and Matthews
& Karovska (2006) were all obtained near a stellar phase

0f ~ (i.e., near maximum optical light). Thus while an
evolution in the radio and millimeter flux density of Mira over
timescales of several years cannot be excluded, another
possibility is that the radio flux density varies over the course
of the stellar pulsation cycle. Indeed, previous 8.5 GHz
measurements by RM97 at several phases during the pulsation
cycle of Mira implied flux density variations of ∼15% at that
frequency and hinted at a flux density minimum near ϕ = 0.
RM97 showed that such a trend could be reproduced by a radio
photosphere model with low-level shocks (propagation speeds
∼10 km s−1; see also Reid & Goldston 2002). Additional high-
cadence monitoring at radio and millimeter wavelengths is
clearly needed to settle the question of whether Mira’s radio

Figure 5. Visibility vs. baseline length for the three data sets presented in this
paper: 46 GHz (top); 94 GHz (middle); 229 GHz (bottom). The solid black
line shows the best-fitting uniform elliptical disk model from Table 2. The red
lines represent circular uniform disk models with diameters equal to the major
axes (solid lines) and minor axes (dashed lines) of the elliptical disk fits.

Figure 6. Contour map of the 229 GHz emission from Mira A (reproduced
from Figure 3), overplotted on an image of the residuals after subtraction of the
best-fitting uniform elliptical disk model. The residuals range from −1.4 to

0.9+ mJy beam−1, with the peak positive residual lying slightly southwest of
the nominal disk center. In comparison, the peak surface brightness of the
observed stellar emission is 71.1 mJy beam−1. The restoring beam (FWHM
27.3 mas) is indicated in the lower left corner.

Figure 7. Same as Figure 5(c), but with additional models overplotted. The
black solid line is the uniform elliptical disk model from Table 1. The colored
lines show models that include a uniform elliptical disk plus an additional
component: disk+point source (turquoise dash–dot line line); disk+ring (purple
dotted line); disk+Gaussian (blue dashed line).

7

The Astrophysical Journal, 808:36 (10pp), 2015 July 20 Matthews, Reid, & Menten

Residual Map
of a Uniform Disk model

Contour lines: CLEAN MAP
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Challenges for VLBI Imaging
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M87 Jet Model 
(Moscibrodzka+17)

EHT 2017/2018 
Full Closure Imaging

Solution: Full Closure Imaging (Cl. Amplitudes + Cl. Phase)

Sparse Modeling: Akiyama et al. in prep.
MEM & CHIRP: Chael et al. in prep.

We need to carefully CLEAN 
so that images are consistent with 
amplitude gains of ~10-30 %. …., etc….

No good phase & amplitude calibrations!
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Challenges for VLBI Imaging
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Sgr A* has a time variability.

(Johnson et al. 2017, ApJ in press; 
  Bouman et al. 2017, IEEE in press)

Solution: regularize and solve movies.
 (extension of sparse and other regularizers in time direction)
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Applications of Dynamical Imaging of M87 data
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(Johnson et al. 2017, ApJ in press)
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Summary

16

- EHT imaging techniques provide a new opportunity to obtain 
high-quality, high-resolution images (and movies) from various 
type of interferometric data sets.

- On-going wide application to various sources and other problems
- Radio Stars, Protoplanetary disks, Jets
- Faraday Tomography
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