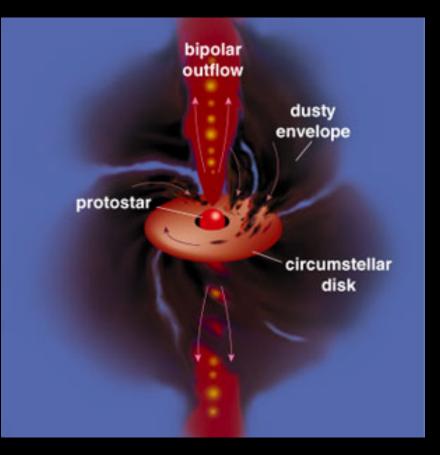
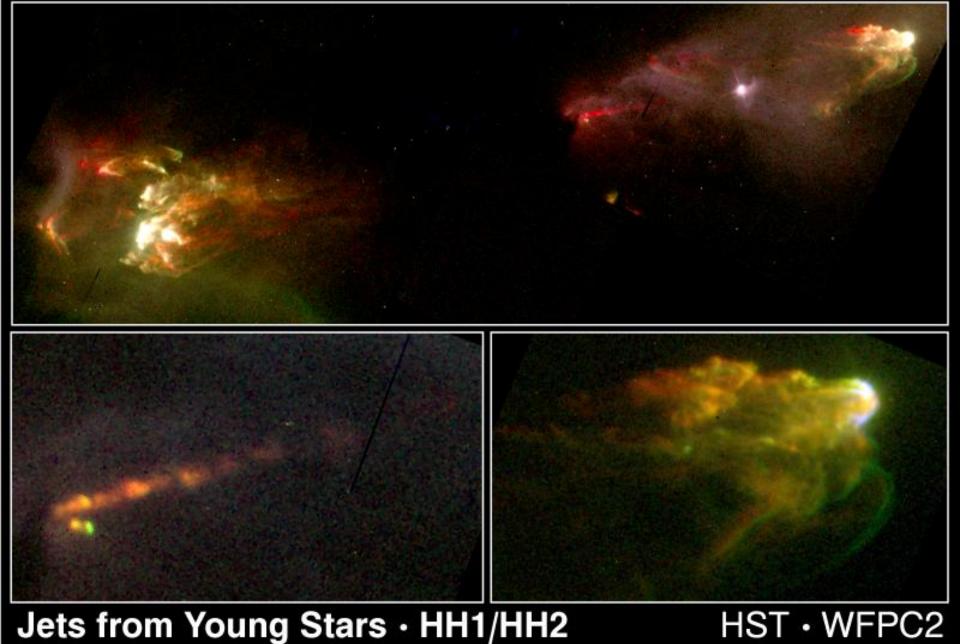
Radio Continuum Observations of Low Mass Young Stars Driving Outflows

Rachael Ainsworth (DIAS) Radio Stars and Their Lives in the Galaxy 3-5 October 2012



Overview

- Introduction
- Observations & Results: AMI
- Spectral Energy Distributions
- Radio Luminosity Correlations
- Summary of Results
- Future Work: eMERLIN


Star-Forming Region in the Carina Nebula O HUBBLESITE.org

YSO Classification

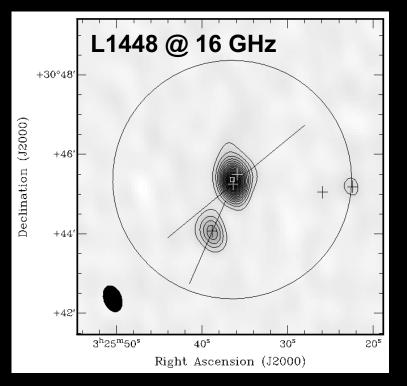
Green, T., 2001, AS, 89, 316.

- Class 0
 - $M_{env} > M_*$
 - Powerful outflows
 - $L_{\rm rad} \propto M^{4/3}$
- Class I
 - $M_{env} < M_*$
 - Circumstellar disc
 - Less powerful outflows than
 Class 0
- Class II
 - CTTS
 - Accumulated >90% mass
 - Optically thick disc

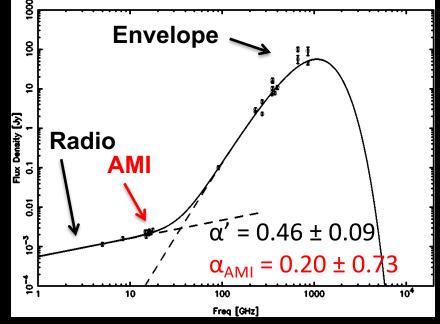
PRC95-24c · ST Scl OPO · June 6, 1995 · J. Hester (AZ State U.), NASA

Radio Continuum Observations

- Thermal bremsstrahlung
 radiation
 - $S_v \propto v^{\alpha}$, where -0.1 < α < 2 and α = 0.6 for a canonical jet (Reynolds 1986)
- Non-thermal emission
 - α < -0.1 (e.g. Carrasco-González et al. 2010)


eMERLIN: Mk2

The Arcminute Microkelvin Imager


- AMI Large Array comprises eight 13 m dishes
- Operates between 13.5 and 17.9 GHz with eight 0.75 GHz bandwidth channels
- Primary beam at 16 GHz
 ≈ 6 arcmin

Results

- 16 GHz radio continuum observations for 16 YSOs with optical outflows
- Power-law spectral indices were fitted to the AMI channel data

$$S_{\nu} \propto \nu^{\alpha_{\rm AMI}}$$

• SEDs were compiled and fitted with a combined radio power-law and modified blackbody model

$$S_{\text{total}} = K_1 \left(\frac{\nu}{\nu_1}\right)^{\alpha'} + K_2 \frac{\nu^\beta B_\nu(T_d)}{\nu_2^\beta B_{\nu_2}(T_d)}$$

(i) Fixing T_d based on evolutionary class (ii) Allowing T_d to vary

SED Results

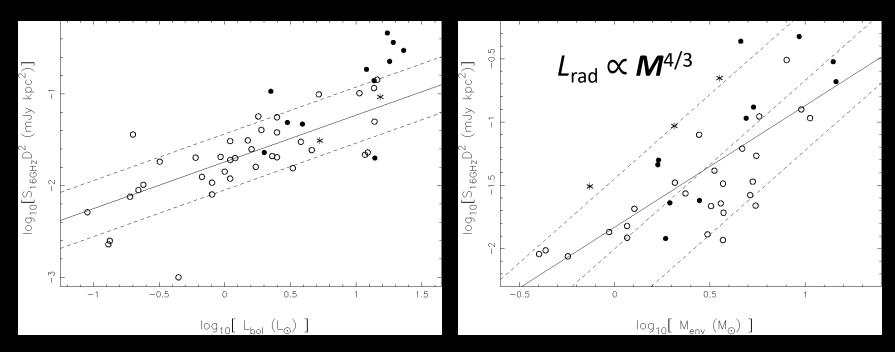
- 78% of the target sample had $-0.1 < \alpha^{AMI} < 2$ - Average $\alpha^{AMI} = 0.4 \pm 0.6$
- 80% of the target sample had -0.1 < α' < 2
 - In both T_d Scenarios
 - Average $\alpha' = 0.2 \pm 0.4$
- Remaining sources have spectral indices < -0.1

These results suggest that free-free radiation is the dominant mechanism for producing the radio emission.

Radio Luminosity

The greybody contribution at 16 GHz:

$$S_{\text{gb},16} = f(K_2, \beta, T_d) = K_2 \frac{\nu_1^{\beta} B_{16}(T_d)}{\nu_2^{\beta} B_{300}(T_d)}$$
$$\sigma_{S,16}^2 = \left(\frac{\partial f}{\partial K_2} \sigma_{K_2}\right)^2 + \left(\frac{\partial f}{\partial \beta} \sigma_{\beta}\right)^2 + \left(\frac{\partial f}{\partial T_d} \sigma_{T_d}\right)^2$$


– The dominant source of error is the uncertainty on $\boldsymbol{\beta}$

- For L1448: $S_{gb,16}$ = 145.74 ± 77.31 μJy, where σ^2 = 4.39² ± 75.8² ± 14.3² μJy

The radio luminosity:

$$L_{\rm rad} = S_{\rm rad, 16} d^2 = (S_{16 \, \rm GHz} - S_{\rm gb, 16}) D^2$$

Radio Luminosity Correlations

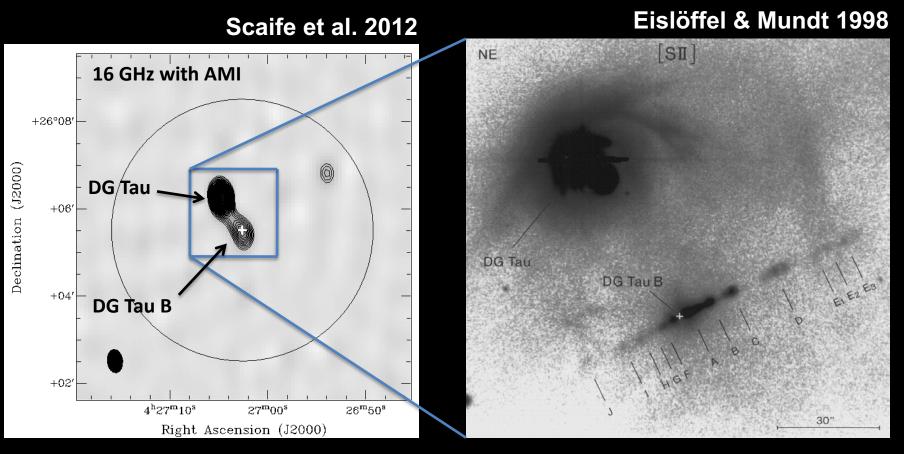
Correlation with Bolometric Luminosity

Best fit from Scaife et al. 2011: $log[L_{rad} (mJy kpc^2)] = -(1.74 \pm 0.18)$ $+ (0.51 \pm 0.26) log[L_{bol} (L_{\odot})]$ **Correlation with Envelope Mass**

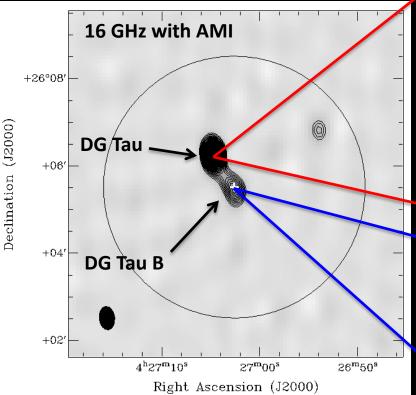
Best fit from Ainsworth et al. 2012: $log[L_{rad} (mJy kpc^2)] = -(1.83 \pm 0.25)$ $+ (0.96 \pm 0.41) log[M_{env}$ $(M_{\odot})]$

Summary of AMI Results

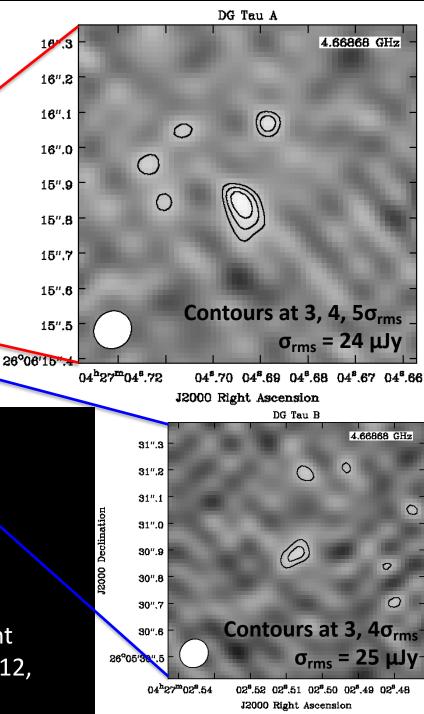
- Provided total radio emission at 16 GHz for a relatively large sample of YSOs with outflows
 - 16 GHz observations constrain the boundary between the radio and sub-mm
- Shown dominance of thermal emission in outflow
- Shown that dust emissivity is important even at radio wavelengths


Future work: eMERLIN Capabilities include:

Observing bands at
1.3-1.8 GHz
4-8 GHz
22-24 GHz


- Resolution 10 to 150 mas
- Total bandwidth 4 GHz
- Sensitivity ~ 1 μ Jy
- Polarimetry
- Proper motions

DG Tau



- DG Tau is a highly active CTTS in Taurus (D ≈140 pc) and was one of the first to be associated with optical jet (Mundt & Fried 1983)
 - The jet has onion-like structure within 500 AU of the star (Bacciotti et al 2000)
 - X-ray jet (Güdel et al 2005)
- DG Tau B is a CI source located 55" SW driving a bipolar jet (Mundt & Fried 1983)

DG Tau with eMERLIN

- Detect the central engine
- eMERLIN Θ_{FWHM} = 0.11x0.10 arcsec
- Jet collimation on scale of \approx 14 au
- Mass loss rate ≈ 1.7 x 10⁻⁸ M_☉yr⁻¹, consistent with recent optical results (Maurri et al. 2012, private communication)

2000 Declinatio

Questions?

Acknowledgements: Anna Scaife (Soton) Tom Ray (DIAS) AMI Consortium

For more information: 2012MNRAS.423.1089A