Circumstellar Astrochemistry with cm and (sub)mm Interferometry

Karl M. Menten MPI für Radioastronomie

Radio Stars and Their Lives in the Galaxy

Haystack, October 4, 2012

Evolution of a solar mass star

AGB (= Red Giant) Stars – Basic Facts

- Mass ~0.8–8 M_{\odot}
- Radii 100 1000 R_{\odot} i.e. up to several AU!
- At tip of asymptotic giant branch
 - Star at the end of it's life cycle
 - Small, hot core and large outer envelope
 - Fusion producing heavier elements; He, C, O
 - Shrouded in dust and gas, circumstellar shell
 - Will finish it's life as a white dwarf and planetary nebula
- Stars pulsate with periods of 100s of days ("LPVs")
- Luminosities many 1000s L_{\odot}
 - Kinematic probes of Galactic structure, Inner Galaxy, Bar
 - − Even 6 D (maser astrometry \rightarrow distances motions)

AGB (= Red Giant) Stars – Basic Facts

- Mass ~0.8−8 M_☉
- Radii 100 1000 R_{\odot} i.e. up to several AU!

AGB Red Giant stars – Observational facts

- Varying visual magnitude
 - Magnitude can change by 6 magnitudes
 - Brightness can vary by a factor of 250
 - Changes in spectral type
- Changes in magnitude are the result of the pulsation of the star
 - Combination of temperature change, size change, and dust formation at temperature minimum

Why is it interesting to study AGB stars?

- stellar evolution
- mass return to the interstellar medium (> 50%???)
- heavy element enrichment CNO+...
 - complex molecules, fullerenes, PAHs
- dust production
- precursors to (P)PNe Talk by R Sahai
 - or SNe (high mass only)
- (relatively) simple geometry (spherically symmetric to 1st order) makes meaningful modeling (e.g. of chemistry) possibe

Reid & Menten 1997

Thermal equilibrium chemistry close to stellar photosphere

T > 2000 K, $n > 10^{12} cm^{-3}$

 M_1 , M_2 , Parent species (atoms, radicals, or molecules)

Dissociation equilibrium

At the thermal equilibrium:

$$M_1 + M_2 \Leftrightarrow M_1 M_2$$

$$P_{M_1} \cdot P_{M_2} = K_D(T) P_{M_1 M_2}$$

 P_{M1} partial pressure of species1 P_{M2} partial pressure of species 1 P_{M1M2} partial pressure of resulting molecule K_D dissociation constant

$$K_{D}(T) = \frac{Q_{M_{1}}Q_{M_{2}}}{Q_{M1M1}}e^{-\frac{\Delta E_{0}^{0}}{kT}}$$

Q's partition functions ΔE_0^0 Difference in zero point energy between state M_1+M_2 and M_1M_2 = "dissociation energy"

MOLECULES IN THE SUN AND STARS¹ By HENRY NORRIS RUSSELL²

Astrophysical Journal, vol. 79, p.317 1934

Table 2. The standard chemical composition

Element	log N	Element	log N	Element	log N
н	12.00	Cl	5.50:[6]	Sc	3.04 [7]
He	11.21:	Cr	5.47 [7]	Sr	2.82 [4]
0	8.77 [1]	Р	5.43 [5]	Br	2.68:[6]
С	8.55 [1]	Ni	5.08 [7]	Zr	2.65 [9]
N	7.93 [1]	K	5.05 [5]	Rb	2.63 [10]
Fe	7.62 [2]	Mn	4.88 [7]	La	2.03 [9]
Si	7.55 [3]	F	4.75:[6]	Nd	1.93 [9]
Mg	7.48 [4]	Ti	4.50 [7]	Ba	1.90 [4]
S	7.21 [5]	v	3.92 [7]	Ce	1.78 [9]
Al	6.40 [5]	в	3.6: [8]	I	1.45:[6]
Ca	6.33 [4]	Cu	3.50 [9]	Be	1.1 [11]
Na	6.18 5	Y	3.20:[9]	Li	0.68:[12]

O-rich or C-rich?

[O]>[C] Throughout most of AGB phase

- → CO and H₂O dominant molecules
- → most oft the carbon goes into CO

[C]>[O] Final phase: C from core convects to surface

- → CO dominant molecule
- → lots of C available to drive rich hydrocarbon chemistry
- → IRC+10216

Fig. 3. Most dominant molecular feature in oxygen rich stars of supergiant characteristics (case I; H:C:N: $O=1:5\cdot10^{-4}:10^{-4}:10^{-8}$, log $P_g \sim \log P(H)$ =1.0). This figure may roughly correspond to the molecular feature in supergiant stars or in upper atmospheres of the giant stars of $F \sim M$ spectral types.

P. Woitke (2006)

- Pulsation creates a shocked atmosphere
 - Shockwaves liberate outer atmosphere resulting in high mass loss rates and wind: $dM/dt = 10^{-7}$ (RGB) to about 10⁻⁴ (AGB) solar masses/year

Condensation of substance X depends on *T* and *p* (i.e. on radial distance from star)

Oxygen-rich star (solar composition)

Carbon-rich star

Equilibrium chemistry produces molecules depending on

Inner envelopes have so far been almost temperature → Parent molecexclusively been studied by optical and IR absorption spectroscopy (except for masers) Abundances "fr Further chemical processing by (interstellar) UV field drives a rich ion molecule chemistry ion than (except for densest envelopes) music SIZES O envelopes have angular sizes of I to several tens of arc seconds star for nearby AGB stars "norm

Table 1. Adopted fractional abundances of parent species with respect to H_2

Masers in circumstellar envelopes are and oxygen-rich, mass-losing evolved stars

1612 MHz maser shell of a typical OH/IR star

OH127.8-0.0

Bowers, Johnston, & Spencer (1983)

Thermodynamics of the Envelope (*T* vs. *r*) determined by Thermal Balance

$$\frac{1}{T}\frac{dT}{dr} = -\frac{4}{3r}\left(1 + \frac{1}{2}\frac{d\ln v}{d\ln r}\right) + \frac{2}{3}\frac{H - C}{kvTn_{H_2}}$$

e.g., Goldreich & Scoville 1978

• Heating implicitly contains mass-loss $H \propto v_d^2 \propto \dot{M}^{-1}$ rate:

 $\Rightarrow \dot{M}$ is a fittable parameter

CO line emission provides most of the cooling for C-(O-)rich stars

CO line emission provides most of the cooling for C- (O-)rich stars

Crosas & Menten 1995

Now, for the first time: High Spectral Resolution Observations of Thermal H_2O emission

Herschel/HIFI

χ Cyg: results from models

Justtanont et al. (2010)

Using this temperature profile and abundance profiles from theoretical chemical models we can calculate model spectra for various molecules.

These spectra, in turn, are used to constrain the chemical models

Spectral scan of Orion A and IRC + 10216 from 72 to 91 GHz

L. E. B. Johansson, C. Andersson, J. Elldér, P. Friberg, Å. Hjalmarson, B. Höglund, W.M. Irvine*, H. Olofsson, and G. Rydbeck Onsala Space Observatory, S-43900 Onsala, Sweden

Received April 28, accepted June 28, 1983

IRC+10216 – extreme carbon star

- Close (~100 pc)
- Very high mass-loss rate (3 $10^{-5} M_{\odot}/yr$)
- \Rightarrow Exceedingly rich molecular spectrum

Many species only detected here

T_A

0.08

-0.08

T_A 0.08

0

-0.08

T,

-HC₃N J=18-17

156160

143120

156240

143200

U156325

143360

156320

43280

Nucleosynthesis in AGB stars: observation of ²⁵Mg and ²⁶Mg in IRC+10216 and possible detection of ²⁶Al (1995)

M. Guélin¹, M. Forestini², P. Valiron², L. M. Ziurys³, M.A. Anderson³, J. Cernicharo⁴, and C. Kahane²

IRC+10216 NARROW EMISSION LINES

2009

Patel et al. 2009 - SMA

The amazing chemistry of the red supergiant VY CMa

- Two new oxide species in VY CMa: PO and AIO
- Two phosphorus molecules in IRC+10216: PH₃ and HCP

Arizona Radio Observatory

VY CMa: SMA ~1 arcsec resolution imaging survey 280–355 GHz

The Atacama Large Millimeter/submillimeter Array

North American, European, Japanese, and Chilean collaboration to build & operate a large millimeter/submm array at high altitude site (5000m) in northern Chile → order of magnitude, or more, improvement in *all* areas of (sub)mm astronomy, including resolution, sensitivity, and frequency coverage.

ALMA: Technical Specifications

- 50 12-m antennas, 12 7-m antennas, 4 12-m with nutators (TP)
- Chajnantor 5000 m altitude site.
- Surface accuracy $\pm 25 \ \mu m$, 0.6" reference pointing in 9m/s wind, 2" absolute pointing all-sky.
- Array configurations between 150m to 18km (+ACA)
- •10 bands in 31-950 GHz + 183 GHz WVR. Initially:

86–119 GHz	"3"	211–275 GHz	"6"
275–370 GHz	"7"	602–720 GHz	"9"

- 8 GHz BW, dual polarization.
- Flux sensitivity 0.2 mJy in 1 min at 345 GHz (median cond.).
- Interferometry, mosaicing & total-power observing.
- Correlator: 4096 channels/2GHz IF, full Stokes.
- Data rate: 6MB/s average; peak 60-150 MB/s.
- All data archived (raw + images), pipeline processing.

ALMA Science Requirements

- High Fidelity Imaging.
- Precise Imaging at 0.1" Resolution.
- Routine sub-mJy Continuum Sensitivity.
- Routine mK Spectral Sensitivity.
- Wideband Frequency Coverage.
- Wide Field Imaging Mosaicing.
- Full Polarization Capability.
- System Flexibility.

Giant Steps I: Frequency and resolution

Giant Steps II: Sensitivity

Giant Steps III: Image quality w. 50 x12m, 12x7m, 4x12m w/ TP

HST quality imaging through with dense sampling of uv plane

A giant z**OOM** lens

$$\Delta S_{v} \propto \frac{T_{sys}}{A_{eff}\sqrt{N(N-1)t_{int}}\Delta v}$$

$$S_{v} (mJy) = \frac{2k}{\lambda^{2}} \int T_{B} d\Omega$$

$$\approx 10^{-9} \theta^{2} (mas) v^{2} (GHz) T(K)$$

$$\Rightarrow \Delta T_{B}(K) \approx 20 \Delta S(mJy) \text{ for } \theta = 20 \text{ mas}, \quad v = 345 \text{ GHz}$$

$$\approx 8 \ 10^{-3} \Delta S(mJy) \text{ for } \theta = 1 \text{ arcsec}$$

ALMA at 345 GHz in 1 h: $\Delta S = 3 \text{ mJy at } \Delta v = 1 \text{ MHz (0.87 km/s)}$ $\rightarrow \Delta T = 60 \text{ K (20 mas FWHM)}$ $= 0.022 \text{ mJy at } \Delta v = 16 \text{ GHz}$

With ALMA it will be possible to probe the whole molecular envelope of an AGB star

ALMA's superb sensitivity and zoom capability will allow continuum and multi-molecule/multiisotopologic imaging of

- the star itself (incl. adaptive calibration)
- the composition of its its molecular photosphere
- element depletion during dust formation
- the acceleration of the envelope
- the complex photochemistry of the outer envelope

The Very Large Array (VLA)

- Built 1970's, dedicated 1980
- 27 x 25m diameter antennas
- Two-dimensional 3-armed array design
- Four scaled configurations, maximum baselines 35, 10, 3.5, 1.0 Km.
- Eight bands centered at 0.074,
 0.327, 1.4, 4.6, 8.4, 15, 23, 45 GHz
- 100 MHz totai iF bandwidth per polarization
- Full polarization in continuum modes.
- total channels but only 16 at maximum bandwidth.

VLA in D-configuration (1 km maximum baseline)

JVLA Frequency–Resolution Coverage

- A key EVLA requirement is continuous frequency coverage from 1 to 50 GHz.
- This will be met with 8 frequency bands:
 - Two existing (K, Q)
 - Four replaced (L, C, X, U)
 - Two new (S, A)
- Existing meter-wavelength bands (P, 4) retained with no changes.
- Blue areas show existing coverage.
- Green areas show new coverage.

[©]Rick Perley@NRAO

JVLA-I Performance Goals The EVLA's performance is vastly better than the VLA's:

Parameter	VLA	EVLA-I	Factor
Point Source Sensitivity (1-s, 12 hours)	10 mJy	1 mJy	10
Maximum BW in each polarization	0.1.GH7	8 GHz	80
# of frequency channels at max. bandwidth	16	16,384	1024
Maximum number of frequency channels	512	4,194,304	8192
Coarsest frequency resolution	50 MHz	2 MHz	25
Finest frequency resolution	381 Hz	0.12 Hz	3180
(Log) Frequency Coverage (1 – 50 GHz)	22%	100%	5

[©]Rick Perley@NRAO

Sensitivity Improvement (1 σ , 12 hours)

Continuum Sensitivity

Spectral Line Sensitivity

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \left[\exp(h\nu/kT) - 1 \right]^{-1} \text{ (Planck's law)}$$
$$= \frac{2kT}{c^{2}}\nu^{2} \text{ if } h\nu << kT \text{ (Rayleigh-Jeans law)}$$

 $S_{\nu}(\mathrm{mJy}) \approx 10^{-9} \theta^{2} (\mathrm{mas}) \nu^{2} (\mathrm{GHz}) T(\mathrm{K})$ $\Rightarrow \Delta T(K) = 330 S_{\nu}(\mathrm{mJy}) \text{ for } \theta = 40 \text{ mas}, \ \nu = 43 \text{ GHz}$ $= 1.8S_{\nu}(\mathrm{mJy}) \text{ for } \theta = 1 \text{ arcsec}, \ \nu = 43 \text{ GHz}$

Q-band sensitivity ~0.5 mJy/9 h/ Δv = 2 km/s

 \Rightarrow Can image 100s of K hot gas at

~100 mas resolution

⇒ non-maser emission from innermost CSEs $S_{\nu}(mJy) \approx 10^{-9} \theta^{2} (mas) \nu^{2} (GHz) T (K)$ $\Rightarrow \Delta T (K) = 330 S_{\nu} (mJy) \text{ for } \theta = 40 \text{ mas}, \ \nu = 43 \text{ GHz}$ $= 1.8S_{\nu} (mJy) \text{ for } \theta = 1 \text{ arcsec}, \ \nu = 43 \text{ GHz}$

If all lines of a species are optically thick, their flux densities scale as v^2 .

 \Rightarrow cm lines weaker than (sub)mm lines

 \rightarrow need for spectral multiplexing

EVLA resolution inadequate for detailed imaging of (radio) photopheres

Menten, Reid, Kaminski & Claussen 2012

High resolution continuum and *thermal* line imaging

With extended configurations, ALMA and the EVLA will be able image continuum and thermal line emission. They will:

- resolve the stellar photosphere
- study atmospheric chemistry
- image start of the outflow
- study dust formation and depletion

Large convection cells as the source of Betelgeuse's extended atmosphere

Lim et al. 1998

Chiavassa, Plez, Josselin, & Freytag 2009

Longest baseline: 217 km (= 6 x VLA)

Non-maser observations of circumstellar chemistry with the JVLA – Some examples

J

CRL 618

HC₃N

Thorwirth et al. 2003

Herschel/HIFI deepens the circumstellar NH₃ enigma*

K. M. Menten¹, F. Wyrowski¹, J. Alcolea², E. De Beck³, L. Decin^{3,4}, A. P. Marston⁵, V. Bujarrabal⁶, J. Cernicharo⁷, C. Dominik^{5,8}, K. Justtanont⁹, A. de Koter^{5,10}, G. Melnick¹¹, D. A. Neufeld¹², H. Olofsson^{9,13}, P. Planesas^{6,15}, M. Schmidt¹⁴, F. L. Schöier⁹, R. Szczerba¹⁴, D. Teyssier⁵, L. B. F. M. Waters^{4,3}, K. Edwards^{16,17}, M. Olberg^{9,17}, T. G. Phillips¹⁸, P. Morris¹⁹, M. Salez^{20,21}, and E. Caux^{22,23}

Only negligible amounts of ammonia should be formed in the atmospheres of evolved stars

Nevertheless, significant amounts of NH₃ have been found in AGB stars, RSGs, PPNe with

- IR heterodyne spectroscopy
- Radio spectroscopy of inversion lines

*Part of HIFISTARS GTKP

Menten et al. 2010

Their wide bandwidth and advanced spectroscopic capability will make allow ALMA and the EVLA to image the radio photospheres of nearby stars and make important contributions to circumsteller astrochemistry

Their adequate (JVLA) and superb (ALMA) brightness sensitivities even at the highest angular resolution will allow

- determination of the diameters and molecular atmospheres of many nearby AGB stars
- unique studies of element depletion in the dust forming process

Due to the zooming capability, if will be possible to image all the different physical and chemical regimes of envelopes