# Imaging the Sun with The Murchison Widefield Array

Divya Oberoi<sup>1,2</sup>, Lynn D. Matthews<sup>2</sup>, Leonid Benkevitch<sup>2</sup> and the MWA Collaboration

- <sup>1</sup> National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune, India
- <sup>2</sup> MIT Haystack Observatory, USA



#### **Outline**

- MWA A quick overview
- Key design aspects
  - Suitability for solar imaging
- Current status and near term plans
- A flavor for MWA solar data
  - The 32T MWA Prototype
  - The Alpha Array commissioning data
- Some solar science snippets from these data

#### Murchison Widefield Array

- A radio interferometer
- 80-300 MHz
- Located in Murchison region of the Western Australian
   Outback
- 128 elements
- Heavily centrally condensed array layout, max. baseline
   ~3km
- 30.72 MHz bandwidth (24 \* 1.28 MHz)
- Nearing completion



## MWA: Key Science Projects

- Epoch of Reionization
  - 21 cm hyperfine transition line of neutral hydrogen, red-shifted to frequencies below 200 MHz
  - Flagship science application, very challenging
- Galactic and Extra-galactic Science
  - Confusion limited all-sky survey with full polarimetry and good spectral resolution
- Time domain astrophysics
  - Known and not yet known transients
- Solar, Heliospheric and Ionospheric Science
  - Spectroscopic solar imaging
  - IPS and Faraday rotation studies of the Heliosphere
  - Ionospheric propagation effects

# MWA: Design Philosophy

- Exploit the advances in digital signal processing and affordability of computing
- Optimize the design for a few key science areas
- Emphasis on quality calibration
- Reduce the complexity of the problem
  - Small array footprint
  - Start at higher end of the low frequency band
  - Low RFI environment
  - 'Simple' hardware design
  - Stable system performance

## **Exquisitely Radio Quiet Site**



# The Challenge of Solar Imaging

#### Nature of the problem

- Large angular size and complex morphology
- Large range in inherent brightness temperatures of features (~10<sup>5</sup> K -10<sup>12</sup> K)
- Time variability on very short time scales (~10s of ms)
- Spectral structure and variability on scales (~10s of kHz)

#### **Performance requirements**

 High fidelity, high dynamic range imaging over a broad observing band with high time and frequency resolution

#### **MWA** characteristics

- Large N design and small footprint ⇒ High fidelity imaging capability
- Time resolution ~0.5 s
- Frequency resolution ~40 kHz
- Spectroscopic imaging capability over 30.72 MHz, can be distributed over the 80 to 300 MHz band in 24 chunks of 1.28 MHz each
- Voltage capture and offline correlation

# MWA uv coverage



#### **MWA: Current Status**

Instrument re-scoped to 128 tiles (~early 2011)

#### Status as of June 2012

- Site infrastructure
  - Site survey for marking tile locations and trench paths
  - Trenching
  - Z Laying power and optical fiber cables
  - Building receiver pads
- Hardware installation
  - ✓ Tiles all 128
  - ☑ Beamformers all 128

#### **Near Term Plans**

- The 128 tile system is being deployed in groups of 32 tiles and 4 receivers each
- They have been christened  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  and  $\epsilon$  arrays
- The schedule calls for the deployment of a new array every month
- First 2 wks cabling up, engineering tests and debugging
- Next 2 wks gathering science commissioning data
- Complete deployment of all field hardware by the end of the year
- 128T array expected to be operational early next year
- The β array has seen its first light and has also made some solar observations

# 32T – The MWA Prototype

- 32 tiles (elements)
- Randomized Reuleaux triangle configuration
- Max baseline ~300m
- Engineering Prototype
  - Verify and optimize hardware performance
  - End-to-end integration
  - Field operation experience
  - Early science
- Operated: Nov. 08 Sep. 11



#### Fine scale emission structure



See numerous non-thermal emission features not seen by other instrumentation

Oberoi et al, 2011

# High dynamic range imaging

- 193.3 MHz
- 0.88 MHz
- 1 s/frame
- 30 s
- Imaging Dynamic Range ~2,500
- Order of magnitude improvement over the earlier state-of-the-art (Nançay Radioheliograph, France)



# Spectoscopic imaging

- Spatially localized spectra
- Squares 300"x300"
- 170-201 MHz
- 24 pt. spectra, separated by 1.28 MHz
- 10 s



#### Solar Images from 2010 March 27

SOHO 304 Å image (01:19 UT)

32T image @193 MHz (04:26:38 UT) ("Super-resolved": 500"x 500" restoring beam)



Super-resolution reveals possible underlying features corresponding to all of the brightest EUV regions.



32T 152.3 MHz, 1s, 80 kHz,  $\theta_0$ =13.3', log scale, DR ~1100, images are 1 s apart



# Signatures of polarised emission





#### Detection of Stokes V

- 27 Mar 2010, 04:28:10 UT
- Data from the 32 element MWA prototype
- Preliminary relative calibration in arbitrary units
- Imaging dynamic range
  - XX Pol: ~1000
  - Stokes I: ~500
  - Stokes V: ~300
- Uncorrected for instrumental pol. Note instrumental pol. will vary smoothly in frequency
- Maximum Stokes V observed ~25%
- Preliminary results from an imaging pipeline being implemented in CASA

# Alpha array - Commissioning data

- Max baseline ~50λ
- 16 Sep, 2012 06:56:50
  to 06:57:31
- 149.64 MHz
- Each Frame 1s, 10 kHz
   Dynamic range ~350
  - ~50 clean components
  - All of them in 2 adjacent pixels (PSF ~5x5 pixels)
- ~40 s



#### Conclusions

- MWA has already demonstrated high fidelity, high dynamic range, spectroscopic imaging capability (+ polarimetric imaging)
- MWA construction is now nearing completing
- Initial commissioning activities proceeding as planned
- Science commissioning for the 128T array will commence next year
- Focus on calibration, analysis pipeline and science results
- Exciting times ahead... stay tuned

#### Acknowledgements

Photographs – Contributors to the MWA Facebook page and Kirsten Gottschalk (ICRAR)

# The CSIRO building



Will house much of the MWA signal processing including the correlator and the Real Time System.

#### The Transformer Hut



In the Trenches





# When it was all dug up



# An Aerial View



Setting up a tile





#### The Tile and Beamformer Deployment Crew



#### The First Receiver in the Field



## First Image - Sun



- Sep 11, 2012
- $v_0 = 142$  MHz;  $\Delta v = 30.72$  MHz;  $\Delta t = 10$  s



25 Sep, 2011, 140.2-170.9 MHz, ~4:09-4:19 UT, auto-correlation, Amp, XX

# The First Light



Fringes on CasA August 04, 2012 Receiver 2

Not everything worked fine in the first go, though