Post-AGB stars and Planetary Nebulae

Stellar evolution
Expansion and evolution
Molecules and dust
3He

Ø SKA

FIG. 21.—Final stellar remnant mass, after AGB mass loss, plotted as a function of the initial mass (solid curves). The dashed line represents the core mass at the first helium shell flash for the Z = 0.016 calculations. Observational points are taken from Weidemann (1987), and references therein. Annotation of the data points is similar to that presented in Fig. 1 of Weidemann & Koester (1983). Filled diamonds represent masses derived from log g, while open diamonds represent masses derived from the stellar radius. Mass determinations via log g and radius for the same object are joined by a line. The crosses represent the Sanduleak-Pesch binary (Greenstein, Dolez, & Vauclair 1983) where $M_f = 0.8$ was assumed for the primary.

GAIA HR diagram McDonald et al. 2017

Post-AGB evolution

Molecular shell detaches and expands

- Heating star drives a dissociation and ionization front
- Rate of heating highly mass dependent

Miller-Bertolami 2016

The role of binaries

Wide
 binaries:
 some
 gravitation
 focussing

Closer:
 Active
 shaping :
 accretion
 disks and jets

Closest: common envelope ejection

Composite spectra: dust, free-free, atomic and molecular lines

As nebula expands: dust continuum fades Molecular lines disappear Free-free optical depth decreases

Radio planetary nebulae

- Many cm surveys
 Zijlstra et al. 1989
 Chhetri et al. 2013
- Typical flux densities 1-10³ mJy
 - $T_{B} 10^{4} 10^{-4} K$
- 31 radio PN in LMCLeverenz et al. 2017

Galactic bulge PN radio Luminosity function Zijlstra 1990

The extinction problem

- Ruffle et al. 2005: R(Bulge)=2.5
- Pottasch & Bernard-Salas 2013
 - Radio flux affected by optical depth

Extinction derived from

- Radio over Hbeta
- Hbeta over Halpha

disagree

- Radio flux too low compared to Halpha
- R lower than 3.1?

Dense clumps in ionized region?

Synchroton emission

- Predicted by Dgani & Soker 1997
- Shock acceleration gives ~1mJy at 1kpc at 1 GHz
- Not detected inside PNe

Bains et al: 3 out of 28 post-AGB stars have non-thermal, variable emission

IRAS 15445–5449

Perez-Sanchez et al. 2013

- Variable synchroton jet in post-AGB star
- Fermi acceleration, B = 5mG
- Note obscuration by thermal free-free emission

IRAS18041-2116

Difficult to distinguish a small synchroton contribution from temporal variability

Low frequency flux is hidden behind optical thick free-free emission

Perez-Sanchez et al. 2017

V1018 Sco

Cohen et al 2006

OH/IR star with PN and synchroton emission

X-ray riddle

- Chandra: hard X-ray point sources from centre of ~15% of PNe
- Origin unclear
- Most likely: Rejuventated (spunup) main-sequence companions

Radio flux evolution

Expected rapid onset of ionization

Sudden rise in radio flux

- Cerrigone et al. 2017
- But no unambiguous cases of evolution over variability

Flux variability

CRL618: periodic 'increase

Sanchez-Contreras et al. 2017

Vy2-2: regular flux increase

Christianto & Seaquist 1998

Expansion of optically thick emission

TABLE 2

FLUX DENSITIES

Frequency (GHz)	1982 Flux (mJy)	1987 Flux (mJy)	1992 Flux (mJy)	1997 Flux (mJy)
1.465 4.885 8 415	$\begin{array}{c} \textbf{6.7} \pm \textbf{0.8} \\ \textbf{39} \pm \textbf{2} \end{array}$	$8.1 \pm 1.3 \\ 41 \pm 2$	8.2 ± 1.1 43 ± 2 96 ± 5	11.7 ± 2.4 43 ± 2 99 ± 5
14.965 22.485	 185 <u>+</u> 19 	199 ± 20 247 ± 28	178 ± 18 224 ± 23	180 ± 18

Evolution of evolved PNe

MGC 7027: increase at low frequencies

$$\odot S = T_e A$$

Decrease at high frequencies

Less ionizing photons dT=+150 K/yr

Gives accurate mass of star Zijlstra et al. 2008

Sakurai's Object

- Helium flash inside old PN
- Ejected a H-poor nebula
- Radio flux from carbon free-free emission traces the re-heating of the star or does it?

Radio recombination lines

og10 [Flux/Flux H11α]

-8

- Relatively little used
- Good tracers of obscured regions
- Masing around H30: indicative of rotating disk?
 - Sanchez-Contreras et al. 2017; Aleman et al in prep.

Radio recombination lines

Zhang et al. 2008

PNe: NGC7027

- High-order lines are optically thick
- Low-order lines are optically thin

Radio recombination lines

- Roelfsema et al. 1991
 - H76A maps of NGC 7027
- Indication for faster polar outflow

Spinning dust

- 20-40 GHz component of the ISM
- Not detected in post-AGB stars/planetary nebulae
 - Cassasus et al. 2007
 - ♥Umana et al. 2008
 - Padzerska et al 2009
- Even though carrier is likely present

OHPN

- OH masers decay rapidly after the AGB
- Only 7 known PNe have OH masers
- Two with 1720 MHz: shock excited

Siao et al. 2015

Uscanga et al. 2012

Molecules

- Molecules present in youngest PNe only
- But CO survives in bipolar PNe
 - Outer shell (NGC 7027)
 - Cometary globules (Helix)
- HCN, HCO^{+,} CN also common Schmidt & Ziurys 2016; Smith et al.

NGC 6781: Otsuka et al. 2017

2015

CO mapping with ALMA

M2-9: CO ring indicates two mass loss events, 500 yr apart.

Castro-Carrizo et al. 2017

Boomerang nebula

ALMA vs HST

- CO shows torus plus polar lobes
- Hubble lobes; slowly expanding torus.
- Ultra-cold CO
- High-mass common envelope system?

Sahai et al. 2017

NGC 6302

PN with hot central star

- Expanding torus 5000-3000 yr old
- Younger inner ring 2200 old

Double ejection event

Two sets of lobes Santander-Garcia et al. 2017

$3 He^+$

- Last addition to the chemical Universe
- Only solar-mass stars contribute
- Detectable through spin-flip transition at 8.6GHz
- But line is very weak

Pioneered by Dana Balser

3He: the mysterious element

Detected in three PNe
Guzman-Ramirez et al.
2016, Balser et al. 2006,
1997

3He: the mysterious element

Abundances too large for cosmological or nucleosynthesis origin

Originate from PN halo?

A maser pumped by ⁴He⁺⁺ recombination?

Projects with the SKA

Fig. 6.— Central ($r \lesssim 1.2 r_e$) magnetic field lines at t = 118 yr. From left to right these are the adiabatic, the rotating and the cooling magnetic towers, respectively. Bottom panels show an upper view, pole-on. Open field lines are a visualization effect.

 Test magnetic towers: Jet formation by magnetic acceleration

 Accretion on mainsequence companions: expected 1 microJy at 1kpc

Milky Way surveys: flux variability at microJy level

✓ Nail the ³He⁺ evolution

Stars The End

