Mark 6 Utility Programs and Commands

Roger Cappallo

Last update: 2015-10-09

Introduction

There are a number of utility programs which facilitate use of the mk6, making it
more straightforward and robust. Also, there are some Linux commands that have
particular applicability for operating a mké6 system, both at a site and a correlator.
Since some of the utilities may be employed on machines other than a mké6 (e.g. dqa),
where possible there is no longer any dependency on the pf_ring library, or other
special-purpose software. This document details the usage of the utilities.



Table of Contents

INTRODUCTION

DA-CLIENT

DBOSS

DPSTAT

DQA

DSPEED

GATHER

GATHER416

GATHER464

GATOR

MODSPEED

SCATSPEED

M6-ERASE




da-client

da-client -h <machine> - where <machine> is the target Mark 6 system (defaults to
localhost). It is a small, standalone program with a simple operator interface that
allows commands to be sent and responses to be received from cplane. cplane must
be running on <machine>.

dboss

dboss is a user interface client for dplane. It provides limited, but direct control of
dplane for recording data, without the need for c-plane to be running. Executing
dboss without any arguments will produce the following help menu:

rjc@gibbs: dboss

Usage:
dboss a <drain_buffers> -- abort
dboss c <start_cntl> <dur> <time> -- capture data

where <start_cntl> is 011121314 for immed. Iwall-clocklvex|vdifImk5
<dur> 1is duration in secs
<time> is start time in appropropiate format
dboss f <bit-mask> -- dbandon files by bit #

dboss 1 -- request module information
(NYD)

dboss n <vdiflImk5b> <1..4 input devices> -- defines new stream(s)
dboss o <sglraid> <filename> <sg-group> -- specifies output file(s)
dboss s <interval secs> -- request status

dboss t [011] -- terminate dplane

where 011 is do_notldo force termination without buffer drain
rjc@gibbs:

dpstat

dpstat monitors dplane UDP messages and displays status information (only). It is
typically run in its own window, where it monitors the current activity of dplane.

dga

dqa is a data quality analyzer program. It is quite simple, yet capable, and it can be
run on any vdif or mké6 data file. dga provides information about the file format and
its contents. It can prove very useful in determining what thread_id’s are present
within a file, its time range, etc. As with many of the utility programs, just running
dga without any arguments will provide a usage list:

rjc@gibbs: dqa

Usage: dga <file_name> to get quality summary

~or~ dqga <file_name> <#packets> for detailed report
~or~ dga -d <file_name> to also de-thread the file



rjc@gibbs:

Providing just the single argument of a file name to dga will cause the whole file to
be read and summarized:

rjc@gibbs: dqa gatl438_0.vdif

opening gatl1438_0.vdif

vdif file

packet payload size 8224

read 7710000000 bytes

time span 12753503:0 --> 12753532:31249
legacy mode FALSE

vdif epoch 29

#chans 16

vdif version 1

station ID adb

#bits/sample 2

complex mode

total data rate 2056.0 Mb/s
channel data rate 128.5 Mb/s

thread 0
number of packets (by thread): 937500
humber of packets out of order: 0
number of second jumps: 0
number of invalid/fill-frame: 0
rjc@gibbs:

Most fields are self-explanatory. Note that the time range given is in the vdif system - seconds after
the 6-month epoch that is listed, followed by the frame # within the second. A quick look, without
reading the whole file, can be had by restricting the number of frames read, as specified by a 2nd
argument. In this mode additional debug printout is offered, such as the block #’s that are read if one
is in scatter-gather mode. The printed information can help one to find errors in the format of data, if
they exist.

One other mode of running dqa is to specify the de-threading option via the -d flag. This mode is used
when a file contains data from multiple threads, and one wishes to separate it into separate files for
each thread. The names of the de-threaded files are created automatically from the input file name,
by appending _n for thread id n. In addition to the thread separation, the usual dga summary is also
created.

dspeed

dspeed is a rudimentary program to test disk performance by writing a number of
10 MB blocks from memory to a single file. It defaults to a total file size of 10 GB,
which can be overwritten by the 2rd parameter. It is a useful utility for checking the
raw speed of a single disk.



rjc@gibbs:~$ dspeed
Usage: dspeed <filename> [<file size (GB)]
rjc@gibbs:~$

gather

gather reassembles scan data from a scatter-gather file system, which is a group of
files originally written by the mkeé. It uses threading and circular buffers for each
thread in order to enhance performance. It is run by specifying file names for n
input files, and one output file. The —o flag before the output file name is required as
a safety measure, to keep one from accidently over-writing an input file (if the
output file name was omitted).

rjc@gibbs: gather

Usage:

gather <ifilel> ... <ifilen> -o <ofile>
rjc@gibbs:

For example:

gather /mnt/disks/*/*/data/scan_xyz.vdif -o /raid_array/scan_xyz.vdif

gather416

gather416 is a variant of gather. In addition to the usual re-assembly of a single vdif
file from the scatter-gather files it merges together multiple threads into a single
thread having more channels.

gather416 is a de-threading version of gather. It reassembles a single file from a
group of files originally created by dplane. Additionally, it splices together on a
sample-by-sample basis contemporaneous data taken on different threads. This
program creates a single-thread x 64-channel vdif file from multiple 4-thread x 16-
channel files. For performance reasons, a separate reader thread is created for each
input (scattered) disk file. The real samples from the various threads are merged
together into a single thread with more channels per sample.

By way of the optional -t flag, one can specify non-standard thread id’s to be used.
Normally, thread id’s are 0, 1, 2, or 3. Thread 0 is put into the lowest 16 channels of
the output sample word, thread 1 into the next lowest 16 channels, and so on. If, for
example, the recording was made using thread id’s 11, 12, 21, and 22, then the five
arguments -t 11 12 21 22 should be inserted in the command line.

rjc@gibbs:~$ gather416

Usage:

gather4l1l6 <ifilel> ... <ifilen> -o <ofile>
~0~



gather416 -t <thr@> <thrl> <thr2> <thr3> <ifilel> ... <ifilen> -o
<ofile>
rjc@gibbs:~$

gather464

gather464 is another de-threading version of gather, but in this case for complex
samples, whereas gather416 dealt with real samples. It reassembles a single file
from a group of files originally created by dplane. Additionally, it splices together on
a sample-by-sample basis contemporaneous data taken on different threads. This
program creates a single-thread x 64-channel vdif file from multiple 4-thread x 16-
channel files, where each 16-channel file contains complex data and has 64 bit
sample words. For performance reasons, a separate reader thread is created for
each input (scattered) disk file. The complex samples from the various threads are
merged together into a single thread with more channels per sample.

By way of the optional -t flag, one can specify non-standard thread id’s to be used.
Normally, thread id’s are 0, 1, 2, or 3. Thread 0 is put into the lowest 16 channels of
the output sample word, thread 1 into the next lowest 16 channels, and so on. If, for
example, the recording was made using thread id’s 11, 12, 21, and 22, then the five
arguments -t 11 12 21 22 should be inserted in the command line.

rjc@gibbs: gather4o64

Usage:

gather464 [-v] <ifilel> ... <ifilen> -o <ofile>

~Qr~

gather464 [-v] -t <thr@> <thrl> <thr2> <thr3> <ifilel> ... <ifilen> -o
<ofile>

rjc@gibbs:

gator

gator is a python script/program that accesses (potentially multiple) Mark 6
scatter-gather file sets, re-assembles data as necessary, and creates output file(s) on
a destination fileserver (often RAID). It makes multiple calls to gather, when
necessary, in order to accomplish the work. It handles automatic mounting of
groups, if necessary, and returns the mké6 system to the state in which it found it.
For example, if a group is mounted by gator, then it is unmounted when the
program concludes. c-plane must be running to allow gator to mount groups.

rjc@gibbs: gator -h
Usage:

gator [options] <group> "<wild_carded_input_files>"
<destination_path>



gathers multiple m6 filesets and writes them to raid

nhote that double quotes are needed around the input file expression
iff the expression contains *, [], or 7?7 symbols

example: gator.py 12 "scan@l[0-3].m5b" /data/2345/westford/

Options:

-h, --help show this help message and exit

-f, --force force overwrite of duplicate output files
(false)

-1 HOST, --ip=HOST mk6 host ip (127.0.0.1)
-p PORT, --port=PORT mk6/cplane port (14242)

-q, --quit quit if an error is encountered (false)
-v, --verbose verbose mode (false)

rjc@gibbs:

modspeed

modspeed is a Python program that sets up a module and runs scatspeed to measure
disk performance, with a minimum of user typing. It requires c-plane to be running,
in order to auto-mount the module when necessary.

rjc@gibbs: modspeed -h
Usage: modspeed [options]
measures the write speed of a mk6 module

Options:
-h, --help show this help message and exit
-g GB, --gb=GB gigabytes to write (60)

-1 HOST, --ip=HOST mk6 host ip (127.0.0.1)

-p PORT, --port=PORT mk6/cplane port (14242)

-s SLOT, --slot=SLOT module slot (1)

-v, --verbose verbose mode (false)
rjc@gibbs:

scatspeed

scatspeed is a C program to test multiple-disk scatter write performance on a
mounted module. It uses the same file-writing routines as used in dplane, but with
dummy data just read out from memory. By explicitly naming the files to be written,
including their full path, one can measure true performance on mounted mké6
modules.

rjc@gibbs: scatspeed

Usage: scatspeed <file size (GB)> <filel> <file2> ... <file n>
number of files is variable (1..32)
rjc@gibbs:



For example, the command:

scatspeed 100 /mnt/disks/1/0/data/test.vdif
/mnt/disks/1/1/data/test.vdif /mnt/disks/2/4/data/test.vdif
/mnt/disks/2/5/data/test.vdif

would write 4 files, 2 on the module in slot 1, and 2 on the module in slot 2. More
typically (albeit tediously), one would specify all 8 disks per slot for 1, 2, or 4 slots.

me6-erase
mé6-erase is a standalone disk-erase and disk-conditioning program



