The following National Science Education Standards Standards and Massachusetts Science and Technology / Engineering Curriculum Frameworks are addressed either explicitly or implicitly within the following curriculum module.

STANDARD: As a result of activities in grades K-12, all students should develop understanding and abilities aligned with the following concepts and processes:

Evidence, models, and explanation, Constancy, change, and measurement

As students develop and . . . understand more science concepts and processes, their explanations should become more sophisticated . . . frequently include a rich scientific knowledge base, evidence of logic, higher levels of analysis, greater tolerance of criticism and uncertainty.

EVIDENCE, MODELS, AND EXPLANATION Evidence consists of observations and data on which to base scientific explanations. Using evidence to understand interactions allows individuals to predict changes in natural and designed systems.

Models are tentative schemes or structures that correspond to real objects, events, or classes of events, and that have explanatory power. Models help scientists and engineers understand how things work. Models take many forms, including physical objects, plans, mental constructs, mathematical equations, and computer simulations.

Scientific explanations incorporate existing scientific knowledge and new evidence from observations, experiments, or models into internally consistent, logical statements. Different terms, such as "hypothesis," "model," "law," "principle," "theory," and "paradigm" are used to describe various types of scientific explanations. As students develop and as they understand more science concepts and processes, their explanations should become more sophisticated. That is, their scientific explanations should more frequently include a rich scientific knowledge base, evidence of logic, higher levels of analysis, greater tolerance of criticism and uncertainty, and a clearer demonstration of the relationship between logic, evidence, and current knowledge.

CONSTANCY, CHANGE, AND MEASUREMENT Although most things are in the process of becoming different—changing—some properties of objects and processes are characterized by constancy, including the speed of light, the charge of an electron, and the total mass plus energy in the universe. Changes might occur, for example, in properties of materials, position of objects, motion, and form and function of systems. Interactions within and among systems result in change. Changes vary in rate, scale, and pattern, including trends and cycles.

Changes in systems can be quantified. Evidence for interactions and subsequent change and the formulation of scientific explanations are often clarified through quantitative distinctions—measurement. Mathematics is essential for accurately measuring change.

Different systems of measurement are used for different purposes. Scientists usually use the metric system. An important part of measurement is knowing when to use which system. For example, a meteorologist might use degrees Fahrenheit when reporting the weather to the public, but in writing scientific reports, the meteorologist would use degrees Celsius.

Scale includes understanding that different characteristics, properties, or relationships within a system might change as its dimensions are increased or decreased.

Rate involves comparing one measured quantity with another measured quantity, for example, 60 meters per second. Rate is also a measure of change for a part relative to the whole, for example, change in birth rate as part of population growth.
As a result of activities in grades 9–12, all students should develop

Abilities necessary to do scientific inquiry
Understandings about scientific inquiry

A critical component of successful scientific inquiry in grades 9-12 includes having students reflect on the concepts that guide the inquiry. Also important is the prior establishment of an adequate knowledge base to support the investigation and help develop scientific explanations. The concepts of the world that students bring to school will shape the way they engage in science investigations, and serve as filters for their explanations of scientific phenomena. Left unexamined, the limited nature of students' beliefs will interfere with their ability to develop a deep understanding of science. Thus, in a full inquiry, instructional strategies such as small-group discussions, labeled drawings, writings, and concept mapping should be used by the teacher of science to gain information about students' current explanations. Those student explanations then become a baseline for instruction as teachers help students construct explanations aligned with scientific knowledge; teachers also help students evaluate their own explanations and those made by scientists.

Students also need to learn how to analyze evidence and data. The evidence they analyze may be from their investigations, other students' investigations, or databases. Data manipulation and analysis strategies need to be modeled by teachers of science and practiced by students. Determining the range of the data, the mean and mode values of the data, plotting the data, developing mathematical functions from the data, and looking for anomalous data are all examples of analyses students can perform. Teachers of science can ask questions, such as "What explanation did you expect to develop from the data?" "Were there any surprises in the data?" "How confident do you feel about the accuracy of the data?" Students should answer questions such as these during full and partial inquiries.

Public discussions of the explanations proposed by students is a form of peer review of investigations, and peer review is an important aspect of science. Talking with peers about science experiences helps students develop meaning and understanding. Their conversations clarify the concepts and processes of science, helping students make sense of the content of science. Teachers of science should engage students in conversations that focus on questions, such as "How do we know?" "How certain are you of those results?" "Is there a better way to do the investigation?" "If you had to explain this to someone who knew nothing about the project, how would you do it?" "Is there an alternative scientific explanation for the one we proposed?" "Should we do the investigation over?" "Do we need more evidence?" "What are our sources of experimental error?" "How do you account for an explanation that is different from ours?"

Questions like these make it possible for students to analyze data, develop a richer knowledge base, reason using science concepts, make connections between evidence and explanations, and recognize alternative explanations. Ideas should be examined and discussed in class so that other students can benefit from the feedback. Teachers of science can use the ideas of students in their class, ideas from other classes, and ideas from texts, databases, or other sources—but

USE TECHNOLOGY AND MATHEMATICS TO IMPROVE INVESTIGATIONS AND COMMUNICATIONS.
A variety of technologies, such as hand tools, measuring instruments, and calculators, should be an integral component of scientific investigations. The use of computers for the collection, analysis, and display of data is also a part of this standard. Mathematics plays an essential role in all aspects of an
inquiry. For example, measurement is used for posing questions, formulas are used for developing explanations, and charts and graphs are used for communicating results.

FORMULATE AND REVISE SCIENTIFIC EXPLANATIONS AND MODELS USING LOGIC AND EVIDENCE. Student inquiries should culminate in formulating an explanation or model. Models should be physical, conceptual, and mathematical. In the process of answering the questions, the students should engage in discussions and arguments that result in the revision of their explanations. These discussions should be based on scientific knowledge, the use of logic, and evidence from their investigation.

RECOGNIZE AND ANALYZE ALTERNATIVE EXPLANATIONS AND MODELS. This aspect of the standard emphasizes the critical abilities of analyzing an argument by reviewing current scientific understanding, weighing the evidence, and examining the logic so as to decide which explanations and models are best. In other words, although there may be several plausible explanations, they do not all have equal weight. Students should be able to use scientific criteria to find the preferred explanations.

COMMUNICATE AND DEFEND A SCIENTIFIC ARGUMENT. Students in school science programs should develop the abilities associated with accurate and effective communication. These include writing and following procedures, expressing concepts, reviewing information, summarizing data, using language appropriately, developing diagrams and charts, explaining statistical analysis, speaking clearly and logically, constructing a reasoned argument, and responding appropriately to critical comments.

UNDERSTANDINGS ABOUT SCIENTIFIC INQUIRY

Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Results of scientific inquiry—new knowledge and methods—emerge from different types of investigations and public communication among scientists. In communicating and defending the results of scientific inquiry, arguments must be logical and demonstrate connections between natural phenomena, investigations, and the historical body of scientific knowledge. In addition, the methods and procedures that scientists used to obtain evidence must be clearly reported to enhance opportunities for further investigation.

As a result of activities in grades 9-12, all students should develop understanding of

Science as a human endeavor
Nature of scientific knowledge
Historical perspectives

Fundamental concepts and principles that underlie this standard include

SCIENCE AS A HUMAN ENDEAVOR
Scientists have ethical traditions. Scientists value peer review, truthful reporting about the methods and outcomes of investigations, and making public the results of work. Violations of such norms do occur, but scientists responsible for such violations are censured by their peers.

NATURE OF SCIENTIFIC KNOWLEDGE

Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must make accurate predictions, when appropriate, about systems being studied. They should also be logical, respect the rules of evidence, be open to criticism, report methods and procedures, and make knowledge public. Explanations on how the natural world changes based on myths, personal beliefs, religious values, mystical inspiration, superstition, or authority may be personally useful and socially relevant, but they are not scientific.

Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism.

The following Guiding Principles, Frameworks, and Standards cited are articulated in the Massachusetts Science and Technology / Engineering Curriculum Framework and may be viewed at: http://www.doe.mass.edu/frameworks/scitech/1006.pdf

Inquiry, Experimentation, and Design in the Classroom

Inquiry-Based Instruction

Engaging students in inquiry-based instruction is one way of developing conceptual understanding, content knowledge, and scientific skills. Scientific inquiry as a means to understand the natural and human-made worlds requires the application of content knowledge through the use of scientific skills. Students should have curricular opportunities to learn about and understand science and technology/engineering through participatory activities, particularly laboratory, fieldwork, and design challenges.

Inquiry, experimentation, and design should not be taught or tested as separate, stand-alone skills. Rather, opportunities for inquiry, experimentation, and design should arise within a well-planned curriculum. Instruction and assessment should include examples drawn from life science, physical science, earth and space science, and technology/engineering standards. Doing so will make clear to students that what is known does not stand separate from how it is known.
Investigations
An inquiry-based approach to science education also engages students in hands-on investigations that allow them to draw upon their prior knowledge and build new understandings and skills. Hands-on experiences should always be purposeful activities that are consistent with current research on how people learn and that develop student understanding of science concepts. Students should also have multiple opportunities to share, present, review, and critique scientific information or findings with others.

GUIDING PRINCIPLE III
Science and technology/engineering are integrally related to mathematics.
Mathematics is an essential tool for scientists and engineers because it specifies in precise and abstract (general) terms many attributes of natural phenomena and manmade objects and the nature of relationships among them. Mathematics facilitates precise analysis and prediction. Take, for example, the equation for one of Newton’s Laws: \(F = ma \) (force equals mass times acceleration). This remarkably succinct description states the invariable relationship among three fundamental features of our known universe. Its mathematical form permits all kinds of analyses and predictions.

Other insights come from simple geometric analysis applied to the living world. For example, volume increases by the cube of an object’s fundamental dimension while area increases by the square. Thus, in an effort to maintain constant body temperature, most small mammals metabolize at much higher rates than larger ones. It is hard to imagine a more compelling and simple explanation than this for the relatively high heart rate of rodents versus antelopes. Even simpler is the quantification of dimensions. How small is a bacterium, how large is a star, how dense is lead, how fast is sound, how hard is a diamond, how sturdy is the bridge, how safe is the plane? These questions can all be answered mathematically. And with these analyses, all kinds of intellectual and practical questions can be posed and solved.

Teachers, curriculum coordinators, and others who help implement this Framework must be aware of the level of mathematical knowledge needed for each science and technology/engineering course, especially at the high school level, and must ensure that the appropriate mathematical knowledge has already been taught or is being taught concurrently.

GUIDING PRINCIPLE IV
An effective program in science and technology/engineering addresses students’ prior knowledge and misconceptions.
Students are innately curious about the world and wonder how things work. They may make spontaneous, perceptive observations about natural objects and processes, and can often be found taking things apart and reassembling them. In many cases, they have developed mental models about how the world works. However, these mental models may be inaccurate, even though they make sense to the students, and inaccuracies work against learning.

Research into misconceptions demonstrates that children can hold onto misconceptions even while reproducing what they have been taught are the “correct answers.” For example, young children may repeat that the earth is round, as they have been told, while continuing to believe that the earth is flat, which is what they can see for themselves. They may find a variety of ingenious ways to reconcile their misconception with the correct knowledge, e.g., by concluding that we live on a flat plate inside the round globe.

Teachers must be skilled at uncovering inaccuracies in students’ prior knowledge and observations, and in devising experiences that will challenge inaccurate beliefs and redirect student learning along more productive routes. The students’ natural curiosity provides one entry point for learning experiences designed to remove students’ misconceptions in science and technology/engineering.
GUIDING PRINCIPLE IX
An effective program in science and technology/engineering gives students opportunities to collaborate in scientific and technological endeavors and communicate their ideas.

Scientists and engineers work as members of their professional communities. Ideas are tested, modified, extended, and reevaluated by those professional communities over time. Thus, the ability to convey their ideas to others is essential for these advances to occur. In order to learn how to effectively communicate scientific and technological ideas, students require practice in making written and oral presentations, fielding questions, responding to critiques, and developing replies. Students need opportunities to talk about their work in focused discussions with peers and with those who have more experience and expertise. This communication can occur informally, in the context of an ongoing student collaboration or online consultation with a scientist or engineer, or more formally, when a student presents findings from an individual or group investigation.

Introductory Physics, High School

Learning Standards for a Full First-Year Course

4. Waves
Central Concept: Waves carry energy from place to place without the transfer of matter.

6. Electromagnetic Radiation

Central Concept: Oscillating electric or magnetic fields can generate electromagnetic waves over a wide spectrum.
6.1 Recognize that electromagnetic waves are transverse waves and travel at the speed of light through a vacuum.
6.2 Describe the electromagnetic spectrum in terms of frequency and wavelength, and identify the locations of radio waves, microwaves, infrared radiation, visible light (red, orange, yellow, green, blue, indigo, and violet), ultraviolet rays, x-rays, and gamma rays on the spectrum.

II Scientific Inquiry Skills Standard scientific literacy can be achieved as students inquire about the physical world. The curriculum should include substantial hands-on laboratory and field experiences, as appropriate, for students to develop and use scientific skills in introductory physics, along with the inquiry skills listed below.

SIS1. Make observations, raise questions, and formulate hypotheses.

• Observe the world from a scientific perspective.

• Pose questions and form hypotheses based on personal observations, scientific articles, experiments, and knowledge.

• Read, interpret, and examine the credibility and validity of scientific claims in different sources of information, such as scientific articles, advertisements, or media stories.

SIS2. Design and conduct scientific investigations.
• Articulate and explain the major concepts being investigated and the purpose of an investigation.

• Select required materials, equipment, and conditions for conducting an experiment.
 • Identify independent and dependent variables.
 • Write procedures that are clear and replicable.

• Employ appropriate methods for accurately and consistently
 o making observations
 o making and recording measurements at appropriate levels of precision
 o collecting data or evidence in an organized way

• Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration (if required), technique, maintenance, and storage.

• Follow safety guidelines.

SIS3. Analyze and interpret results of scientific investigations.
 • Present relationships between and among variables in appropriate forms.
 o Represent data and relationships between and among variables in charts and graphs.
 o Use appropriate technology (e.g., graphing software) and other tools.
 • Use mathematical operations to analyze and interpret data results.
 • Assess the reliability of data and identify reasons for inconsistent results, such as sources of error or uncontrolled conditions.
 • Use results of an experiment to develop a conclusion to an investigation that addresses the initial questions and supports or refutes the stated hypothesis.
 • State questions raised by an experiment that may require further investigation.