LMX2315/LMX2320/LMX2325 PLLatinum™ Frequency Synthesizer for RF Personal Communications
LMX2325 2.5 GHz
LMX2320 2.0 GHz
LMX2315 1.2 GHz

General Description
The LMX2315/2320/2325’s are high performance frequency synthesizers with integrated prescalers designed for RF operation up to 2.5 GHz. They are fabricated using National’s ABIC IV BiCMOS process.

A 64/65 or a 128/129 divide ratio can be selected for the LMX2315 and LMX2320 RF synthesizer at input frequencies of up to 1.2 GHz and 2.0 GHz, while 32/33 and 64/65 divide ratios are available in the 2.5 GHz LMX2325. Using a proprietary digital phase locked loop technique, the LMX2315/2320/2325’s linear phase detector characteristics can generate very stable, low noise signals for controlling a local oscillator.

Serial data is transferred into the LMX2320 and the LMX2325 via a three line MICROWIRE™ interface (Data, Enable, Clock). Supply voltage can range from 2.7V to 5.5V.

The LMX2315, LMX2320 and the LMX2325 feature very low current consumption, typically 6 mA, 10 mA and 11 mA respectively.

The LMX2315, LMX2320 and the LMX2325 are available in a TSSOP 20-pin surface mount plastic package.

Features
- RF operation up to 2.5 GHz
- 2.7V to 5.5V operation
- Low current consumption
- Dual modulus prescaler:
 - LMX2325: 32/33 or 64/65
 - LMX2320/LMX2315: 64/65 or 128/129
- Internal balanced, low leakage charge pump
- Power down feature for sleep mode: $I_{CC} = 30 \mu A$ (typ) at $V_{CC} = 3V$
- Small-outline, plastic, surface mount TSSOP, 0.173" wide

Applications
- Cellular telephone systems (GSM, IS-54, IS-95, RCR-27)
- Portable wireless communications (DECT, PHS)
- CATV
- Other wireless communication systems

Block Diagram
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OSC_IN</td>
<td>I</td>
<td>Oscillator input. A CMOS inverting gate input intended for connection to a crystal resonator for operation as an oscillator. The input has a V_CC/2 input threshold and can be driven from an external CMOS or TTL logic gate. May also be used as a buffer for an externally provided reference oscillator.</td>
</tr>
<tr>
<td>3</td>
<td>OSC_OUT</td>
<td>O</td>
<td>Oscillator output.</td>
</tr>
<tr>
<td>4</td>
<td>(V_P)</td>
<td>O</td>
<td>Power supply for charge pump. Must be (\geq V_CC).</td>
</tr>
<tr>
<td>5</td>
<td>(V_CC)</td>
<td>O</td>
<td>Power supply voltage input. Input may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.</td>
</tr>
<tr>
<td>6</td>
<td>(D_o)</td>
<td>O</td>
<td>Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td></td>
<td>Ground.</td>
</tr>
<tr>
<td>8</td>
<td>LD</td>
<td>O</td>
<td>Lock detect. Output provided to indicate when the VCO frequency is in “lock”. When the loop is locked, the pin’s output is HIGH with narrow low pulses.</td>
</tr>
<tr>
<td>10</td>
<td>(f_IN)</td>
<td>I</td>
<td>Prescaler input. Small signal input from the VCO.</td>
</tr>
<tr>
<td>11</td>
<td>CLOCK</td>
<td>I</td>
<td>High impedance CMOS Clock input. Data is clocked in on the rising edge, into the various counters and registers.</td>
</tr>
<tr>
<td>13</td>
<td>DATA</td>
<td>I</td>
<td>Binary serial data input. Data entered MSB first. LSB is control bit. High impedance CMOS input.</td>
</tr>
<tr>
<td>14</td>
<td>LE</td>
<td>I</td>
<td>Load enable input (with internal pull-up resistor). When LE transitions HIGH, data stored in the shift registers is loaded into the appropriate latch (control bit dependent). Clock must be low when LE toggles high or low. See Serial Data Input Timing Diagram.</td>
</tr>
<tr>
<td>15</td>
<td>FC</td>
<td>I</td>
<td>Phase control select (with internal pull-up resistor). When FC is LOW, the polarity of the phase comparator and charge pump combination is reversed.</td>
</tr>
<tr>
<td>16</td>
<td>BISW</td>
<td>O</td>
<td>Analog switch output. When LE is HIGH, the analog switch is ON, routing the internal charge pump output through BISW (as well as through (D_o)).</td>
</tr>
<tr>
<td>17</td>
<td>(f_OUT)</td>
<td>O</td>
<td>Monitor pin of phase comparator input. CMOS output.</td>
</tr>
<tr>
<td>18</td>
<td>(\phi_p)</td>
<td>O</td>
<td>Output for external charge pump. (\phi_p) is an open drain N-channel transistor and requires a pull-up resistor.</td>
</tr>
<tr>
<td>19</td>
<td>PWDN</td>
<td>I</td>
<td>Power Down (with internal pull-up resistor). PWDN — HIGH for normal operation. PWDN — LOW for power saving. Power down function is gated by the return of the charge pump to a TRI-STATE8 condition.</td>
</tr>
<tr>
<td>20</td>
<td>(\phi_p)</td>
<td>O</td>
<td>Output for external charge pump. (\phi_p) is a CMOS logic output.</td>
</tr>
<tr>
<td>2,9,12</td>
<td>NC</td>
<td></td>
<td>No connect.</td>
</tr>
</tbody>
</table>

http://www.national.com
Note 1: The prescalar for the LMX2315 and LMX2320 is either 64/65 or 128/129, while the prescalar for the LMX2325 is 32/33 or 64/65.

Note 2: The power down function is gated by the charge pump to prevent unwanted frequency jumps. Once the power down pin is brought low the part will go into power down mode when the charge pump reaches a TRI-STATE condition.
Absolute Maximum Ratings (Notes 1, 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- **Power Supply Voltage**
 - \(V_{CC} \): -0.3V to +6.5V
 - \(V_{P} \): -0.3V to +6.5V

- **Voltage on Any Pin with GND = 0V (\(V_{I} \))**: -0.3V to +6.5V

- **Storage Temperature Range (\(T_{S} \))**: -65°C to +150°C

- **Lead Temperature (\(T_{L} \) (solder, 4 sec.))**: +260°C

Recommended Operating Conditions

- **Power Supply Voltage**
 - \(V_{CC} \): 2.7V to 5.5V
 - \(V_{P} \): \(V_{CC} \) to +5.5V

- **Operating Temperature (\(T_{A} \))**: -40°C to +85°C

Recommended Operating Conditions

- **Power Supply Voltage**
 - \(V_{CC} \): 2.7V to 5.5V
 - \(V_{P} \): \(V_{CC} \) to +5.5V

Recommended Operating Conditions

- **Operating Temperature (\(T_{A} \))**: -40°C to +85°C

Electrical Characteristics

LMX2325 and LMX2320 \(V_{CC} = V_{P} = 3.0V \); LMX2315 \(V_{CC} = V_{P} = 5.0V \); -40°C < \(T_{A} < 85°C \), except as specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{CC})</td>
<td>Power Supply Current</td>
<td>LMX2315 (V_{CC} = 3.0V)</td>
<td>6.0</td>
<td>8.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5.0V)</td>
<td>6.5</td>
<td>8.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMX2320 (V_{CC} = 3.0V)</td>
<td>10</td>
<td>13.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMX2325 (V_{CC} = 3.0V)</td>
<td>11</td>
<td>15</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{CC-PWDN})</td>
<td>Power Down Current</td>
<td>(V_{CC} = 3.0V)</td>
<td>30</td>
<td>180</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5.0V)</td>
<td>60</td>
<td>350</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(f_{IN})</td>
<td>Maximum Operating Frequency</td>
<td>LMX2315</td>
<td>1.2</td>
<td>GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMX2320</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMX2325</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{OSC})</td>
<td>Oscillator Frequency</td>
<td></td>
<td>5</td>
<td>20</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Load on OSC out</td>
<td>5</td>
<td>40</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(f_{P})</td>
<td>Phase Detector Frequency</td>
<td></td>
<td>10</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{IN})</td>
<td>Input Sensitivity</td>
<td>(V_{CC} = 2.7V) to 3.3V</td>
<td>-15</td>
<td>+6</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3.3V) to 5.5V</td>
<td>-10</td>
<td>+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OSC})</td>
<td>Oscillator Sensitivity</td>
<td>(OSC\text{IN})</td>
<td>0.5</td>
<td>(V_{PP})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>High-Level Input Voltage</td>
<td>*</td>
<td>0.7 (V_{CC})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-Level Input Voltage</td>
<td>*</td>
<td>0.3 (V_{CC})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>High-Level Input Current (Clock, Data)</td>
<td>(V_{IH} = V_{CC} = 5.5V)</td>
<td>-1.0</td>
<td>1.0</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Low-Level Input Current (Clock, Data)</td>
<td>(V_{IL} = 0V, V_{CC} = 5.5V)</td>
<td>-1.0</td>
<td>1.0</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>Oscillator Input Current</td>
<td>(V_{OH} = V_{CC} = 5.5V)</td>
<td>100</td>
<td>\mu A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IL} = 0V, V_{CC} = 5.5V)</td>
<td>-100</td>
<td>\mu A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>High-Level Input Current (LE, FC)</td>
<td>(V_{OH} = V_{CC} = 5.5V)</td>
<td>-1.0</td>
<td>1.0</td>
<td>\mu A</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Low-Level Input Current (LE, FC)</td>
<td>(V_{IL} = 0V, V_{CC} = 5.5V)</td>
<td>-100</td>
<td>1.0</td>
<td>\mu A</td>
<td></td>
</tr>
</tbody>
</table>

*Except \(f_{P} \) and \(OSC\text{IN} \)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: This device is a high-performance RF integrated circuit with an ESD rating < 2 kV and is ESD sensitive. Handling and assembly of this device should be done at ESD workstations.

http://www.national.com
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\text{Do-source}</td>
<td>Charge Pump Output Current</td>
<td>$V_{CC} - V_p - 3.0V, V_{DO} - V_p/2$</td>
<td>-2.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{Do-sink}</td>
<td>Charge Pump Output Current</td>
<td>$V_{CC} - V_p - 3.0V, V_{DO} - V_p/2$</td>
<td>2.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{Do-source}</td>
<td>Charge Pump Output Current</td>
<td>$V_{CC} - V_p - 5.0V, V_{DO} - V_p/2$</td>
<td>-5.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{Do-sink}</td>
<td>Charge Pump Output Current</td>
<td>$V_{CC} - V_p - 5.0V, V_{DO} - V_p/2$</td>
<td>5.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{Do-Tri}</td>
<td>Charge Pump TRI-STATE* Current</td>
<td>$0.5V < V_{DO} < V_p - 0.5V$</td>
<td>-2.5</td>
<td>nA</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>I\text{Do} vs V\text{Do}</td>
<td>Charge Pump Output Current Magnitude Variation vs Voltage</td>
<td>$0.5V < V_{Do} < V_p - 0.5V$</td>
<td>2.5</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{Do-sink vs IDo-source}</td>
<td>Sink vs Source Mismatch (Note 2)</td>
<td>$V_{Do} = V_p/2$</td>
<td>10</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{Do} vs T</td>
<td>Charge Pump Output Current Magnitude Variation vs Temperature (Note 2)</td>
<td>$-40^\circ C < T < 85^\circ C$</td>
<td>10</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{OH}</td>
<td>High-Level Output Voltage</td>
<td>$I_{OH} = -1.0 \text{mA}$**</td>
<td>$V_{CC} = 0.8$</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{OL}</td>
<td>Low-Level Output Voltage</td>
<td>$I_{OL} = 1.0 \text{mA}$**</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{OH} (OSCOUT)</td>
<td>High-Level Output Voltage</td>
<td>$I_{OH} = -200 \mu\text{A}$</td>
<td>$V_{CC} = 0.8$</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{OL} (OSCOUT)</td>
<td>Low-Level Output Voltage</td>
<td>$I_{OL} = 200 \mu\text{A}$</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{OL}</td>
<td>Open Drain Output Current (ip)</td>
<td>$V_{CC} = 5.0V, V_{OL} = 0.4V$</td>
<td>1.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I\text{OH}</td>
<td>Open Drain Output Current (ip)</td>
<td>$V_{OH} = 5.5V$</td>
<td>100</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R\text{ON}</td>
<td>Analog Switch ON Resistance (2315)</td>
<td></td>
<td>100</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{CS}</td>
<td>Data to Clock Set Up Time</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{CH}</td>
<td>Data to Clock Hold Time</td>
<td></td>
<td>10</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{CWH}</td>
<td>Clock Pulse Width High</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{CWL}</td>
<td>Clock Pulse Width Low</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{ES}</td>
<td>Clock to Enable Set Up Time</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{EW}</td>
<td>Enable Pulse Width</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Except OSCOUT

Notes 1, 2, 3: See related equations in Charge Pump Current Specification Definitions
Typical Performance Characteristics

ICC vs VCC LMX2320/25

Charge Pump Current vs \(D_o \) Voltage

Charge Pump Current Variation

Sink vs Source Mismatch vs \(D_o \) Voltage

http://www.national.com
Typical Performance Characteristics (Continued)

I_{DQ}, TRI-STATE vs D_{Q} Voltage

- $T = +90^\circ C$
- $T = +70^\circ C$
- $T = +25^\circ C$

Oscillator Input Sensitivity

- $V_{CC} = 5.5V$
- $V_{CC} = 3.3V$
- $V_{CC} = 2.7V$

LMX2320/25 Input Sensitivity vs Frequency

- $V_{CC} = 2.7V$
- $V_{CC} = 3.0V$
- $V_{CC} = 3.3V$

LMX2315 Input Sensitivity vs Frequency

- $V_{CC} = 5.5V$
- $V_{CC} = 5.0V$
- $V_{CC} = 4.5V$

http://www.national.com
Typical Performance Characteristics (Continued)

LMX2320/25 Input Sensitivity at Temperature Variation, \(V_{CC} = 3V \)

![Graph showing input sensitivity at different temperatures for \(V_{CC} = 3V \)](image)

LMX2320/25 Input Sensitivity at Temperature Variation, \(V_{CC} = 5V \)

![Graph showing input sensitivity at different temperatures for \(V_{CC} = 5V \)](image)

LMX2315 Input Sensitivity at Temperature Variation, \(V_{CC} = 5V \)

![Graph showing input sensitivity at different temperatures for \(V_{CC} = 5V \)](image)

LMX2315 Input Sensitivity at Temperature Variation, \(V_{CC} = 3V \)

![Graph showing input sensitivity at different temperatures for \(V_{CC} = 3V \)](image)

LMX2315 Input Impedance vs Frequency \(V_{CC} = 2.7V \) to 5.5V, \(f_{IN} = 100 \) MHz to 1,600 MHz

![Graph showing input impedance vs frequency for \(V_{CC} = 2.7V \) to 5.5V, \(f_{IN} = 100 \) MHz to 1,600 MHz](image)

Marker 1
- 500 MHz, Real = 69, Imag. = 330

Marker 2
- 900 MHz, Real = 56, Imag. = 193

Marker 3
- 1 GHz, Real = 35, Imag. = 172

Marker 4
- 1,500 MHz, Real = 30, Imag. = 106

LMX2320/25 Input Impedance vs Frequency \(V_{CC} = 2.7V \) to 5.5V, \(f_{IN} = 500 \) MHz to 3000 MHz

![Graph showing input impedance vs frequency for \(V_{CC} = 2.7V \) to 5.5V, \(f_{IN} = 500 \) MHz to 3000 MHz](image)

Marker 1
- 1.5 GHz, Real = 48, Imag. = 128

Marker 2
- 1.8 GHz, Real = 44, Imag. = 102

Marker 3
- 2.0 GHz, Real = 42, Imag. = 90

Marker 4
- 2.5 GHz, Real = 36, Imag. = 72
Charge Pump Current Specification Definitions

1. \(I_{D0} \) vs \(V_{Do} \) = Charge Pump Output Current magnitude variation vs Voltage =
 \[\frac{|I_1 - |I_3| + |I_4 - |I_6| + |I_2 - |I_5| |}{|I_1 - |I_3| + |I_4 - |I_6| + |I_2 - |I_5| |} \times 100\% \]

2. \(I_{D0-sink} \) vs \(I_{D0-source} \) = Charge Pump Output Current Sink vs Source Mismatch =
 \[\frac{|I_2 - |I_5| |}{|I_2 - |I_5| |} \times 100\% \]

3. \(I_{Do} \) vs \(T_a \) = Charge Pump Output Current magnitude variation vs Temperature =
 \[\frac{|I_2 @ temp| - |I_2 @ 25\degree C|}{|I_5 @ temp| - |I_5 @ 25\degree C|} \times 100\% \] and \(|I_5 @ temp| - |I_5 @ 25\degree C| \) * 100%

4. \(K_p \) = Phase detector/charge pump gain constant =
 \[\frac{1}{|I_2| + |I_5|} \]

\(\Delta V \) = Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to VCC and ground. Typical values are between 0.5V and 1.0V.

Note 1: \(N = 10,000 \) \(R = 50 \) \(P = 64 \)

Note 2: Sensitivity limit is reached when the error of the divided RF output, \(f_{OUT} \), is greater than or equal to 1 Hz.
Functional Description

The simplified block diagram below shows the 19-bit data register, the 14-bit R Counter and the S Latch, and the 18-bit N Counter (intermediate latches are not shown). The data stream is clocked (on the rising edge) into the DATA input, MSB first. If the Control Bit (last bit input) is HIGH, the DATA is transferred into the R Counter (programmable reference divider) and the S Latch (prescaler select: LMX2315 and LMX2320: 64/65 or 128/129; LMX2325 32/33 or 64/65). If the Control Bit (LSB) is LOW, the DATA is transferred into the N Counter (programmable divider).

PROGRAMMABLE REFERENCE DIVIDER (R COUNTER) AND PRESCALER SELECT (S LATCH)

If the Control Bit (last bit shifted into the Data Register) is HIGH, data is transferred from the 19-bit shift register into a 14-bit latch (which sets the 14-bit R Counter) and the 1-bit S Latch (S15, which sets the prescaler: 64/65 or 128/129 for the LMX2315/20 or 32/33 or 64/65 for the LMX2325). Serial data format is shown below.

14-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

<table>
<thead>
<tr>
<th>Divide Ratio</th>
<th>S 14</th>
<th>S 13</th>
<th>S 12</th>
<th>S 11</th>
<th>S 10</th>
<th>S 9</th>
<th>S 8</th>
<th>S 7</th>
<th>S 6</th>
<th>S 5</th>
<th>S 4</th>
<th>S 3</th>
<th>S 2</th>
<th>S 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
<tr>
<td>16383</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
- Divide ratios less than 3 are prohibited.
- Divide ratio: 3 to 16383
- S1 to S14: These bits select the divide ratio of the programmable reference divider.
- Control bit (set to HIGH level to load R counter and S Latch)
- Data is shifted in MSB first.

Prescaler Select

<table>
<thead>
<tr>
<th>LMX2315/20</th>
<th>LMX2325</th>
</tr>
</thead>
<tbody>
<tr>
<td>128/129</td>
<td>64/65</td>
</tr>
<tr>
<td>64/65</td>
<td>32/33</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

http://www.national.com
Functional Description (Continued)

PROGRAMMABLE DIVIDER (N COUNTER)

The N counter consists of the 7-bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bit (last bit shifted into the Data Register) is LOW, data is transferred from the 19-bit shift register into a 7-bit latch (which sets the 7-bit Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter). Serial data format is shown below.

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

<table>
<thead>
<tr>
<th>Divide Ratio A</th>
<th>S7</th>
<th>S6</th>
<th>S5</th>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>127</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

<table>
<thead>
<tr>
<th>Divide Ratio B</th>
<th>S8</th>
<th>S7</th>
<th>S6</th>
<th>S5</th>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2047</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited)

PULSE SWALLOW FUNCTION

\[f_{VCO} \approx \left(\frac{P \times B}{A}\right) \times f_{OSC}/R \]

- **f\textsubscript{VCO}**: Output frequency of external voltage controlled oscillator (VCO)
- **B**: Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
- **A**: Preset divide ratio of binary 7-bit swallow counter (0 ≤ A ≤ 127, A ≤ B)
- **f\textsubscript{OSC}**: Output frequency of the external reference frequency oscillator
- **R**: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16383)
- **P**: Preset modulus of dual modulus prescaler (64 or 128 for 2315/20 or 32 or 64 for 2325)

Note: B ≥ A

http://www.national.com
Functional Description (Continued)

SERIAL DATA INPUT TIMING

<table>
<thead>
<tr>
<th>DATA</th>
<th>N1: MSB</th>
<th>N17</th>
<th>N10</th>
<th>N9</th>
<th>N8</th>
<th>CONTROL BIT: LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R15: MSB)</td>
<td>(R14)</td>
<td>(R8)</td>
<td>(R7)</td>
<td>(R6)</td>
<td>(R1) CONTROL BIT: LSB</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Parenthesis data indicates programmable reference divider data.
- Data shifted into register on clock rising edge.
- Data is shifted in MSB first.

Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around V_{CC}/2. The test waveform has an edge rate of 0.6 V/ns with amplitudes of 2.2V @ V_{CC} and 2.6V @ V_{CC}.

Phase Characteristics

In normal operation, the FC pin is used to reverse the polarity of the phase detector. Both the internal and any external charge pump are affected.

Depending upon VCO characteristics, FC pin should be set accordingly:
- When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT;
- When VCO characteristics are like (2), FC should be set LOW.

When FC is set HIGH or OPEN CIRCUIT, the monitor pin of the phase comparator input, f_{out}, is set to the reference divider output, f_{r}. When FC is set LOW, f_{out} is set to the programmable divider output, f_{p}.

VCO Characteristics

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes:
- Phase difference detection range: -2π to $+2\pi$
- The minimum width pump up and pump down current pulses occur at the D_o pin when the loop is locked.
- FC = HIGH

http://www.national.com 12
Analog Switch

The analog switch is useful for radio systems that utilize a frequency scanning mode and a narrow band mode. The purpose of the analog switch is to decrease the loop filter time constant, allowing the VCO to adjust to its new frequency in a shorter amount of time. This is achieved by adding another filter stage in parallel. The output of the charge pump is normally through the Dp pin, but when LE is set HIGH, the charge pump output also becomes available at BISW. A typical circuit is shown below. The second filter stage (LPF-2) is effective only when the switch is closed (in the scanning mode).

Typical Crystal Oscillator Circuit

A typical circuit which can be used to implement a crystal oscillator is shown below.

Typical Lock Detect Circuit

A lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below.
Typical Application Example

- **Operational Notes:**
 * VCO is assumed AC coupled.
 ** RIN increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10X to 200X depending on the VCO power level. fIN RF impedance ranges from 40X to 100X.
 *** 50X termination is often used on test boards to allow use of external reference oscillator. For most typical products a CMOS clock is used and no terminating resistor is required. OSCIN may be AC or DC coupled. AC coupling is recommended because the input circuit provides its own bias. (See Figure below)

- **Layout Hints:**
 Proper use of grounds and bypass capacitors is essential to achieve a high level of performance.
 Crosstalk between pins can be reduced by careful board layout.
 This is a static sensitive device. It should be handled only at static free work stations.

http://www.national.com
Application Information

LOOP FILTER DESIGN

A block diagram of the basic phase locked loop is shown.

![Basic Charge Pump Phase Locked Loop](image)

FIGURE 1. Basic Charge Pump Phase Locked Loop

An example of a passive loop filter configuration, including the transfer function of the loop filter, is shown in Figure 2.

![2nd Order Passive Filter](image)

FIGURE 2. 2nd Order Passive Filter

Define the time constants which determine the pole and zero frequencies of the filter transfer function by letting

\[
T_2 = R_2 \times C_2
\]

and

\[
T_1 = R_2 \times C_1 \times C_2
\]

The PLL linear model control circuit is shown along with the open loop transfer function in Figure 3. Using the phase detector and VCO gain constants \(K_w\) and \(K_{\text{VCO}}\) and the loop filter transfer function \(Z(s)\), the open loop Bode plot can be calculated. The loop bandwidth is shown on the Bode plot as the point of unity gain. The phase margin is shown to be the difference between the phase at the unity gain point and \(-180^\circ\).

![Open Loop Transfer Function](image)

FIGURE 3. Open Loop Transfer Function

Thus we can calculate the 3rd order PLL Open Loop Gain in terms of frequency

\[
G(s) \times H(s) = -K_p \times K_{\text{VCO}} \times (s + T_2) \times s + C_1 \times N(1 + j \omega \times T_1) \times \frac{1}{T_2}
\]

From equation 2 we can see that the phase term will be dependent on the single pole and zero such that

\[
\phi(\omega) = \tan^{-1}(\frac{\omega \times T_2}{1}) - \tan^{-1}(\frac{\omega \times T_1}{1}) + 180^\circ
\]

By setting

\[
\frac{d\phi}{d\omega} = \frac{T_2}{1 + (\omega \times T_2)^2} - \frac{T_1}{1 + (\omega \times T_1)^2} = 0
\]

we find the frequency point corresponding to the phase inflection point in terms of the filter time constants \(T_1\) and \(T_2\). This relationship is given in equation 5.

For the loop to be stable the unity gain point must occur before the phase reaches \(-180^\circ\). We therefore want the phase margin to be at a maximum when the magnitude of the open loop gain equals 1. Equation 2 then gives

\[
C_1 = \frac{K_p \times K_{\text{VCO}} \times T_1}{1 + (j \omega_p \times T_2)}\left(1 + j \omega_p \times T_1\right)\]

Open Loop Gain = \(\theta / \theta_0 = H(s) \times G(s)\)

Closed Loop Gain = \(\theta / \theta_1 = G(s) \times (1 + H(s) \times G(s))\)
Therefore, if we specify the loop bandwidth, \(\omega_p \), and the phase margin, \(\phi_p \), Equations 1 through 6 allow us to calculate the two time constants, \(T_1 \) and \(T_2 \), as shown in equations 7 and 8. A common rule of thumb is to begin your design with a 45° phase margin.

\[
T_1 = \frac{\sec \phi_p - \tan \phi_p}{\omega_p} \quad (7)
\]

\[
T_2 = \frac{1}{\omega_p^2 \cdot T_1} \quad (8)
\]

From the time constants \(T_1 \) and \(T_2 \), and the loop bandwidth, \(\omega_p \), the values for \(C_1 \), \(R_2 \), and \(C_2 \) are obtained in equations 9 to 11.

\[
C_1 = \frac{T_1 \cdot K_{VCO}}{T_2 \cdot \omega_p^2 \cdot N \sqrt{\frac{(\omega_p \cdot T_2)^2}{1 + (\omega_p \cdot T_1)^2} - 1}} \quad (9)
\]

\[
C_2 = \frac{C_1 \cdot \frac{T_2}{T_1} - 1}{T_2} \quad (10)
\]

\[
R_2 = \frac{T_2}{C_2} \quad (11)
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{VCO})</td>
<td>Voltage Controlled Oscillator (VCO) Tuning Voltage constant. The frequency vs voltage tuning ratio.</td>
</tr>
<tr>
<td>(K_p) (mA)</td>
<td>Phase detector/charge pump gain constant. The ratio of the current output to the input phase differential.</td>
</tr>
<tr>
<td>(N)</td>
<td>Main divider ratio. Equal to (RF_{opt}/f_{ref})</td>
</tr>
<tr>
<td>(RF_{opt}) (MHz)</td>
<td>Frequency of the phase detector inputs. Usually equivalent to the RF channel spacing.</td>
</tr>
<tr>
<td>(f_{ref}) (kHz)</td>
<td>Frequency of the phase detector inputs. Usually equivalent to the RF channel spacing.</td>
</tr>
</tbody>
</table>

In choosing the loop filter components a trade off must be made between lock time, noise, stability, and reference spurs. The greater the loop bandwidth the faster the lock time will be, but a large loop bandwidth could result in higher reference spurs. Wider loop bandwidths generally improve close in phase noise but may increase integrated phase noise depending on the reference input, VCO and division ratios used. The reference spurs can be reduced by reducing the loop bandwidth or by adding more low pass filter stages but the lock time will increase and stability will decrease as a result.

THIRD ORDER FILTER

A low pass filter section may be needed for some applications that require additional rejection of the reference sidebands, or spurs. This configuration is given in Figure 4. In order to compensate for the added low pass section, the component values are recalculated using the new open loop unity gain frequency. The degradation of phase margin caused by the added low pass is then mitigated by slightly increasing \(C_1 \) and \(C_2 \) while slightly decreasing \(R_2 \).

The added attenuation from the low pass filter is:

\[
ATTEN = 20 \log_{10} \left(\frac{2\pi f_{ref} \cdot R_3 \cdot C_3}{1} \right) \quad (12)
\]

Defining the additional time constant as:

\[
T_3 = R_3 \cdot C_3 \quad (13)
\]

Then in terms of the attenuation of the reference spurs added by the low pass pole we have:

\[
T_3 = \sqrt{\frac{10 \cdot ATTEN}{20} - 1} \quad (14)
\]

We then use the calculated value for loop bandwidth \(\omega_c \) in equation 11, to determine the loop filter component values in equations 15–17. \(\omega_c \) is slightly less than \(\omega_p \), therefore the frequency jump lock time will increase.
Application Information (Continued)

Consider the following application examples:

Example #1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{VCO})</td>
<td>20 MHz/V</td>
</tr>
<tr>
<td>(K_Φ)</td>
<td>5 mA (Note 1)</td>
</tr>
<tr>
<td>(RF_{opt})</td>
<td>900 MHz</td>
</tr>
<tr>
<td>(F_{ref})</td>
<td>200 kHz</td>
</tr>
<tr>
<td>(N = RF_{opt}/F_{ref})</td>
<td>4500</td>
</tr>
<tr>
<td>(ω_p = 2π \cdot 20 \text{ kHz})</td>
<td>1.256e5</td>
</tr>
<tr>
<td>(Φ_p)</td>
<td>45°</td>
</tr>
<tr>
<td>(\text{ATTEN})</td>
<td>20 dB</td>
</tr>
</tbody>
</table>

\[
T_1 = \frac{\sec Φ_p - \tan Φ_p}{ω_p} = 3.29e-6
\]

\[
T_3 = \sqrt{\frac{1020^2 - 1}{3200e3}} = 2.387e-6
\]

\[
\omega_c = \frac{(3.29e-6 + 2.387e-6)}{(3.29e-6 + 2.387e-6)^2 + 3.29e-6 \cdot 2.387e-6}
\]

\[
\omega_c \cdot \sqrt{\frac{1 + (3.29e-6 + 2.387e-6)^2 + 3.29e-6 \cdot 2.387e-6}{(3.29e-6 + 2.387e-6)^2}} = 7.045e4
\]

\[
T_2 = \frac{1}{(7.045e4)^2 \cdot (3.29e-6 + 2.387e-6)} = 3.549e-5
\]

\[
C_1 = \frac{3.549e-5}{(5e-3) \cdot 20e6 \cdot \left(\frac{1 + (7.045e4)^2 \cdot (3.549e-5)^2}{(1 + (7.045e4)^2 \cdot (3.549e-5)^2)^2} \right)^{1/2}} = 1.085 \text{ nF}
\]

\[
C_2 = 1.085 \text{ nF} \cdot \left(\frac{3.55e-5}{3.29e-6} - 1\right) = 10.6 \text{ nF};
\]

\[
R_2 = \frac{3.55e-5}{10.6e-9} = 33.5 \text{ kΩ};
\]

\[
R_3 = \frac{2.34e-6}{22e3} = 106 \text{ pF}.
\]

Converting to standard component values gives the following filter values, which are shown in Figure 4.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>1000 pF</td>
</tr>
<tr>
<td>(R_2)</td>
<td>3.3 kΩ</td>
</tr>
<tr>
<td>(C_2)</td>
<td>10 nF</td>
</tr>
<tr>
<td>(R_3)</td>
<td>22 kΩ</td>
</tr>
<tr>
<td>(C_3)</td>
<td>100 pF</td>
</tr>
</tbody>
</table>

Note 1: See related equation for \(K_Φ \) in Charge Pump Current Specification Definitions. For this example \(V_0 = 5.0 \text{ V} \). The value of \(K_Φ \) can then be approximated using the curves in the Typical Performance Characteristics for Charge Pump Current vs. \(D_s \) Voltage. The units for \(K_Φ \) are in mA. You may also use \(K_Φ = (5 \text{ mA}/2π \text{ rad}) \), but in this case you must convert \(K_{VCO} \) to (rad/V) multiplying by \(2π \).
MEASUREMENT RESULTS (Example #1)

FIGURE 5. PLL Reference Spurs

The reference spurious level is <-74 dBc, due to the loop filter attenuation and the low spurious noise level of the LMX2315.

FIGURE 6. PLL Phase Noise 10 kHz Offset

The phase noise level at 10 kHz offset is -80 dBc/Hz.

FIGURE 7. PLL Phase Noise @ 1 kHz Offset

The phase noise level at 1 kHz offset is -79.5 dBc/Hz.

FIGURE 8. Frequency Jump Lock Time

Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. Figure 8 shows the switching waveforms for a frequency jump of 865 MHz to 915 MHz. By narrowing the frequency span of the HP53310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within ± 500 Hz. The lock time is seen to be less than 500 μs for a frequency jump of 50 MHz.
Application Information (Continued)

Example 2

\(K_{VCO} = 34 \text{ MHz/V} \)
\(K_w = 2.8 \text{ mA} \) (Note 1)
\(F_{RF_{opt}} = 1665 \text{ kHz} \)
\(F_{Ref} = 300 \text{ kHz} \)
\(N = \frac{RF_{opt}}{F_{Ref}} = 5550 \)
\(\omega_P = 2\pi \times 20 \text{ kHz} = 1.256 \times 10^5 \)
\(\phi_p = 43 \)
\(\text{ATTEN} = 12 \text{ dB} \)

\[
T_1 = \frac{\sec \phi - \tan \phi}{\omega_P} = 3.462 \times 10^{-6}
\]

\[
T_3 = \frac{10(12/20) - 1}{\sqrt{2\pi \times 300 \times 10^3}} = 9.16 \times 10^{-7}
\]

\[
\tan \phi (3.462 - 6 + 9.16\times 10^{-7})^2 + 3.462 - 6 \times 9.16\times 10^{-7}
\]

\[
\omega_P = \left[\frac{1}{\sqrt{3.462 - 6 + 9.16\times 10^{-7}}^2 + 3.462 - 6 \times 9.16\times 10^{-7}} \left(\frac{1}{\tan \phi (3.462 - 6 + 9.16\times 10^{-7})^2} + 1 \right) \right]^2
\]

\[
T_2 = \frac{1}{(9.682 \times 10^4)^2 (3.462 - 6 + 9.16\times 10^{-7})} = 2.437 \times 10^{-5}
\]

\[
C_1 = \frac{3.462 - 6 \times (2.8e - 3) \times 3.462}{2.437 - 5 (9.682 \times 10^4)^2 \times 5550} \left[\frac{1 + (9.682 \times 10^4)^2 \times (2.437 - 5)^2}{1 + (9.682 \times 10^4)^2 (3.462 - 6)^2} \left[1 + (9.682 \times 10^4)^2 \times (9.16\times 10^{-7})^2 \right] \right]^{1/2}
\]

\[
C_2 = 0.63 \text{nF} \left(\frac{2.437e - 5}{3.402 - 6} - 1 \right) = 3.88 \text{nF};
\]

\[
R_2 = 2.437e - 5 \times 3.88 - 9
\]

\(C_3 = 9.16\times 10^{-7} - 27e3 \)

If we choose \(R_3 = 27k; \) then \(C_3 = 9.16\times 10^{-7} - 34 \text{ pF}. \)

Converting to standard component values gives the following filter values, which are shown in Figure 4.

\[
C_1 = 560 \text{ pF}
\]
\[
R_2 = 6.8 \text{k} \Omega
\]
\[
C_2 = 2700 \text{ pF}
\]
\[
R_3 = 27 \text{ k} \Omega
\]
\[
C_3 = 56 \text{ pF}
\]

Note 1: See related equation for \(K_w \) in Charge Pump Current Specification Definitions. For this example \(V_p = 3.3 \text{V}. \) The value for \(K_w \) can then be approximated using the curves in the Typical Performance Characteristics for Charge Pump Current vs. \(D_p \) Voltage. The units for \(K_w \) are in mA. You may also use \(K_w = (2.8 \text{ mA}/2\pi \text{ rad}) \), but in this case you must convert \(K_{VCO} \) to \((\text{rad}/V)\) multiplying by \(2\pi \).
Application Information (Continued)

MEASUREMENT RESULTS (Example #2)

FIGURE 10. PLL Reference Spurs
The reference spurious level is < -65 dBc, due to the loop filter attenuation and the low spurious noise level of the LMX2320.

FIGURE 12. PLL Phase Noise 20 kHz Offset
The phase noise level at 20 kHz offset is -80 dBc/Hz. The spurs at 60 and 180 Hz offset are due to 60 Hz line noise from the power supply.

FIGURE 11. PLL Phase Noise @ 150 Hz Offset
The phase noise level at 150 Hz offset is -81.1 dBc/Hz. The spurs at 60 and 180 Hz offset are due to 60 Hz line noise from the power supply.

FIGURE 13. Frequency Jump Lock Time
Of concern in any PLL loop filter design is the time it takes to lock in to a new frequency when switching channels. Figure 13 shows the switching waveforms for a frequency jump of 1650.9 MHz to 1683.9 MHz. By narrowing the frequency span of the HP5310A Modulation Domain Analyzer enables evaluation of the frequency lock time to within ± 1 kHz. The lock time is seen to be less than 500 μs for a frequency jump of 33 MHz.

http://www.national.com
The LMX PLLatinum series of frequency synthesizers are equipped with an internal balanced charge pump as well as outputs for driving an external charge pump. Although the superior performance of NSC's on board charge pump eliminates the need for an external charge pump in most applications, certain system requirements are more stringent. In these cases, using an external charge pump allows the designer to take direct control of such parameters as charge pump voltage swing, current magnitude, TRI-STATE leakage, and temperature compensation.

One possible architecture for an external charge pump current source is shown in Figure 14. The signals \(\phi_p \) and \(\phi_r \) in the diagram, correspond to the phase detector outputs of the 2315/20/25 frequency synthesizers. These logic signals are converted into current pulses, using the circuitry shown in Figure 14, to enable either charging or discharging of the loop filter components to control the output frequency of the PLL.

Referring to Figure 14, the design goal is to generate a 5 mA current which is relatively constant to within 5V of the power supply rail. To accomplish this, it is important to establish as large of a voltage drop across \(R_5, R_8 \) as possible without saturating \(Q_2, Q_4 \). A voltage of approximately 300 mV provides a good compromise. This allows the current source reference being generated to be relatively repeatable in the absence of good \(Q_1, Q_2/Q_3, Q_4 \) matching. (Matched transistor pairs is recommended.) The \(\phi_p \) and \(\phi_r \) outputs are rated for a maximum output load current of 1 mA while 5 mA current sources are desired. The voltages developed across \(R_4, 9 \) will consequently be approximately 258 mV, or 42 mV less than \(R_8, 5 \), due to the current density differences \(\Delta \text{0.026} \times 1\text{mA} \).

In order to calculate the value of \(R_7 \) it is necessary to first estimate the forward base to emitter voltage drop (\(V_{fn,p} \)) of the transistors used, the \(V_{OL} \) drop of \(\phi_p \), and the \(V_{OH} \) drop of \(\phi_r \)'s under 1 mA loads. (\(\phi_p \)'s \(V_{OL} \) < 0.1V and \(\phi_r \)'s \(V_{OH} \) < 0.1V).

Knowing these parameters along with the desired current allow us to design a simple external charge pump. Separating the pump up and pump down circuits facilitates the nodal analysis and give the following equations.

\[
\begin{align*}
R_4 &= \frac{V_{R5} - V_{f} \times n_{\text{source}}}{n_{\text{max}}} \\
R_9 &= \frac{V_{R8} - V_{f} \times n_{\text{sink}}}{n_{\text{max}}} \\
R_5 &= \frac{V_{R5} \times (\beta_p + 1)}{n_{\text{max}}} - \frac{1}{n_{\text{sink}}} \\
R_8 &= \frac{V_{R8} \times (\beta_n + 1)}{n_{\text{max}}} - \frac{1}{n_{\text{sink}}} \\
R_6 &= \frac{V_{P} - V_{VOL\text{trip}}}{} - \frac{n_{\text{sink}}}{n_{\text{max}}} \\
R_7 &= \frac{V_{P} - V_{VOH\text{trip}}}{} - \frac{n_{\text{sink}}}{n_{\text{max}}} \\
\end{align*}
\]

Therefore select

\[
\begin{align*}
R_4 &= \frac{0.3V - 0.026 \times n(5.0\text{mA}/1.0\text{mA})}{5 \text{ mA}} = 51.6\Omega \\
R_5 &= \frac{0.3V \times (50 + 1)}{1.0 \text{ mA} \times (50 + 1) - 5.0 \text{ mA}} = 332\Omega \\
R_8 &= \frac{0.3V \times (100 + 1)}{1.0 \text{ mA} \times (100 + 1) - 5.0 \text{ mA}} = 315.6\Omega \\
R_6 &= \frac{0.3V - 0.1V \times (0.3V + 0.8V)}{1.0 \text{ mA}} = 3.8 \text{ k}\Omega \\
\end{align*}
\]
LMX2315/LMX2320/LMX2325 PLLatinum Frequency Synthesizer for RF Personal Communications

LMX2325 2.5 GHz LMX2320 2.0 GHz LMX2315 1.2 GHz

Physical Dimensions millimeters

NS Package Number MTC20
20-Lead (0.173” Wide) Thin Shrink Small Outline Package (TM)
Order Number LMX2315TM, LMX2320TM or LMX2325TM
For Tape and Reel Order Number LMX2315TMX, LMX2320TMX or LMX2325TMX (2500 Units per Reel)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018
http://www.national.com

National Semiconductor Europe

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.,
Tsimshatsui, Kowloon
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
t Japan Ltd.
Tel: 81-043-299-2408
Fax: 81-043-299-2308

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.