RAPID for Dual-Polarized Interferometry of Lightning

Julia N. Tilles1, Ningyu Liu1, Joe Dwyer1, Frank D. Lind2, Tom Brown2, Will Rogers2, and 'the RAPID team'2

1. Department of Physics and Space Science Center, University of New Hampshire, Durham, NH, USA.

2. Haystack Observatory, Westford, MA, USA
Lightning as a radio source
Lightning as a polarized radio source

RAPID array configuration
RAPID array configuration

<table>
<thead>
<tr>
<th>Antennas:</th>
<th>(three) Long Wavelength Array (LWA) antennas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitizers:</td>
<td>(three) Ettus X300 radio at 200 Msps IQ</td>
</tr>
<tr>
<td>Resolution:</td>
<td>14 bits</td>
</tr>
<tr>
<td>Center frequency:</td>
<td>45 MHz</td>
</tr>
<tr>
<td>Bandwidth:</td>
<td>50 MHz (10-70 MHz)</td>
</tr>
<tr>
<td>Baselines:</td>
<td>335 m, 469 m, and 606 m</td>
</tr>
<tr>
<td>Dual-polarization:</td>
<td></td>
</tr>
</tbody>
</table>
Interferometry – concept

\[\cos \alpha = \frac{c \tau_d}{d} = \left(\frac{\Delta \phi}{2\pi} \right) \frac{\lambda}{d} \]
Interferometry – VHF waveforms
Interferometry – VHF waveforms

Window 12, vhf_A times series

digital amplitude

0 2 4 6 8 10 12

Window 12, vhf_B times series

time (µs) +3.588788844e10

digital amplitude

0 2 4 6 8 10 12

Window 12, vhf_C times series

time (µs) +3.588788844e10

digital amplitude

0 2 4 6 8 10 12
Interferometry – cross correlations

- xcorr of vhf_A and vhf_B in Window 12
- xcorr of vhf_A and vhf_C in Window 12
- xcorr of vhf_B and vhf_C in Window 12

(physically possible) time delays (s)
Interferometry – cross correlations

Time delay where xcorr is max
Interferometry – cosine plane projection

Time delay where $xcorr$ between signals A and B is max
Interferometry – cosine plane projection

Time delay where xcorr between signals A and C is max

Time delay where xcorr between signals A and B is max

orientation of baseline AB

orientation of baseline AC

east

north
Interferometry – ideal point source

Image by projecting xcorrs into cosine plane

idx=0, delt=0.0000us, #samps/frame=2000,
#samps shift btwn frames=1000

North
South
West
East
Interferometry – ideal point source
Interferometry – real source

Image by projecting xcorrs into cosine plane

idx=21300, delt=0.0000us, #samps/frame=300, #samps shift btwn frames=150
Interferometry – real source

Image by projecting xcorrs into cosine plane

idx=21450, delt=1.0714us, #samps/frame=300, #samps shift btwn frames=150
Interferometry – real source

Image by projecting xcorrs into cosine plane

idx = 21600, delt = 2.1429us,
#samps/frame = 300, #samps shift btw frames = 150
Interferometry – real source

Image by projecting xcorrs into cosine plane

idx=21750, delt=3.2143us, #samps/frame=300, #samps shift btwn frames=150
Interferometry – flash 1
Interferometry – flash 1
Interferometry – flash 2
Interferometry – flash 2
Interferometry + Polarization

\[I = \langle E_{NS}^2 \rangle + \langle E_{EW}^2 \rangle \]
\[Q = \langle E_{NS}^2 \rangle - \langle E_{EW}^2 \rangle \]
\[U = 2\langle E_{NS} E_{EW} \cdot \cos(\Delta \phi_{NS} - \Delta \phi_{EW}) \rangle \]
\[V = 2\langle E_{NS} E_{EW} \cdot \sin(\Delta \phi_{NS} - \Delta \phi_{EW}) \rangle \]

\[d = \frac{\sqrt{Q^2 + U^2 + V^2}}{I} \]