DEUTERIUM ARRAY MEMO #004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886

November 8, 2001 (updated) June 13, 2002

Telephone: 978-692-4764 Fax: 781-981-0590

To: Deuterium Array Group

Alan E.E. Rogers From:

Subject: D1 array "project book"

This memo will be occasionally updated to contain the latest thinking on various parameters and features of the array. These parameters may change as we gain more insight into the design, complete design studied etc.

1.0 Frequency coverage	
Nominal frequency coverage	322 to 328.6 MHz
Deuterium rest frequency	327, 384, 352.52 Hz
Wavelength	92 cm
1 km/s	1.092 kHz
Instantaneous bandwidth for D1 expt.	500 kHz
Number of frequency bins	1024
Resolution	500 Hz
1.1 Station antenna array	
Number of elements	25×2
Polarization	dual linear
Element spacing	0.8λ (29 inches) nominal
Element height above	
ground plane	0.2λ (7.2 inches) nominal
Ground plane size	$14.5' \times 14.5'$
Nominal collecting minimum area	12 m^2
Nominal beamwidth	12 degrees
Electronic steering	± 20 degrees
Mechanical steering	15 to 90 degrees pointing South
Antenna temperature	
(at 20 degrees elevation) due	
to sidelobes on the ground ("spillove	er) <20 K

1.2 Analog receiving portion	
LNA noise temperature	< 20 K
Analog bandwidth	> 10 MHz
Flatness	$< \pm 1 \text{ dB}$
Slope	< 0.01 dB/100 kHz
Curvature	$< 0.001 \text{ dB} / 100 \text{ kHz}^2$
Rejection of any images	
in band 326.4 to 328.4 MHz	>50 dB
Rejection of images outside band	>80 dB
Input 3 rd order intercept	>10 dBm
1.3 Station antenna processing	
Number of receiver channels	50 + 1
i.e. one for each element	
plus one for GPS Signal processing	
Minimum duty cycle	90%
i.e. data processed continuously	
with maximum of 10 % overhead	

a) D1 expt.

The D1 experiment and other observations which will use the stations independently require no interferometric processing at a central facility. For these observations the 25 digitally filtered for each polarization outputs need to be combined after FFT for form 25 beams. The spectrum for each element and the spectrum from each beam need to be accumulated. The advantage of preserving the spectrum from each element is for diagnostics and interference sensing.

1.4	Overall receiving system	
	Range of signal in band 326.9-327.9 MHz	
	to be handled by A/D	>20 dB
	Max. level of spurious signals referred	
	To input	< - 220 dBm
	Max. RFI radiated by station	
	Electronics in 322-329 MHz band	< - 200 dBm
	Max. RFI in other bands	< - 130 dBm
1.5	Array configuration	
	8×8 quasi-regular (32 stations)	
	15 m E-W spacing on ground	
	45 m N-S spacing on ground	
	Nominal synthesis resolution	30 minute of arc
	Total collecting area	384 m^2
	Equivalent dish diam.	≈ 25 m
	Aperture synthesis processing:	
1.6	Array aperture synthesis processing	

For example: To cover the 640 km/s velocity band with 10 km/s resolution for a single station beam there will be 64 complex spectral points from each polarization from each station every 100 microseconds. Assuming 8 bits per complex sample, this corresponds to a data rate of 41 MB/s and a processing requirement of about 1 GFLOPS for all baselines and both polarizations. This processing rate could be handled by a commercial SHARC, C60 or power PC VME board interfaced to the central processing computer.