MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 HAYSTACK OBSERVATORY
 WESTFORD, MASSACHUSETTS 01886

November 19, 2003

To: Deuterium Array Group

From: Alan E.E. Rogers
Subject: Output file format
The output files are ASC11. However, the spectral data for each individual element is base 64 encoded using the same scheme as e-mail attachments. Each line of the files starts with

Col	Entry	Desc.
0	YYY:DDD:HH:MM:SS	UT Time
1	Az	beam or element azimuth
2	El	beam or element elevation
3	Integ	integration secs
4	mode	format mode
5	frequency	MHz

The line format modes are:
0 element spectrum in ASCII
10 element spectrum in Base64
1 beam spectrum in ASCII
2 beam power
3 correlation coefficients
4 pulsar period spectrum
5 total power
6 beam map
7 temperature
The line format mode that are present depend on the record options in the d1.cat file (see memo \#40).
The columns beyond 5 are mode dependent:
Modes 0 and 10 individual element spectra
Col entry
6 frequency separation in Hz
7 channel (or element) number
8 scaling factor (normally 1024)
9 start of spectrum

For mode 0 then spectrum is straight ASCII with spaces between entries. i.e. the same format as the RFI monitor. For mode 10 the spectrum is encoded using base64 as follows:

```
For (i=0, i<64; i++){
If(i>='A' && i<=' Z')b64[i]=i-'A';
If (i>='a' && i<=' z') b64[i]= i-'a'+26;
If (i>='0' && i<='9') b64[i]=i-'0'+52;
If(i-'+') b64[i]=62;
If(i== '/') b64[i] = 63;
}
```

each number is encoded with 3 ASCII symbols followed by the next number encoded in the next 3 symbols.

Mode 1 beam spectrum
Col entry
6 frequency separation in Hz
7 beam number
8 number of frequencies (normally 1024)
9 start of spectrum in ASCII with spaces as delimeters.
Mode 2 beam total power
Col entry
6 source name
7 az of beam (deg)
8 el of beam (deg)
9 scan angle (deg)
10 beam total power
11 b_beamnumber
12 data maximum
13 pulse maximum
14 number of elements
Mode 3 correlation coefficients
Col entry
6 baseline
7 normalized correlation
8 correlation phase
9 -end above triplet repeats
Mode 4 pulsar period bin spectrum
Col entry
6 beam number
70
8 power in period averaging bin
9 number of pulses in first bin
10-775 above triplet repeats for next 255 bins
776 source name
777 computer ID
mode 5 total power for each element
col entry
6-29 total power 24 entries
30-53 cal phase 24 entries
54 "USB-errors" keyword
55-60 usb error count
Mode 6 beam map
Col entry
6 start of beam map
Mode 7 temperature data
col entry
6 "mbtem" keyword
7 motherboard temperature $\operatorname{deg} \mathrm{C}$
8 CPU temperature degC
9 time difference between CPU clock and count of 1 second ticks since start of the program

