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DEUTERIUM ARRAY MEMO #060 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

HAYSTACK OBSERVATORY 
WESTFORD, MASSACHUSETTS 01886 

November 1, 2004 
Telephone: 978-692-4764 

 Fax: 781-981-0590 
 
To:  Deuterium Array Group 
 
From:  Alan E.E. Rogers  
 
Subject: Combining data from separate regions to improve the detection probability 
 
Since we are looking at low SNRs in the spectra it has been suggested that we might combine the 
data from adjacent beams to improve the SNR.  If beams pointed at different regions of the sky 
are combined we need to investigate the noise correlation statistics. 
 
1]  Receiver noise correlation beam width 
 
Simultaneous beams are formed from the vector addition of the same receiver noise so that 
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and hence the correlation of the receiver noise between beams is 
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where the phase j jandφ θ  are used to steer the beams.  The receiver noise correlation beam 
shape is therefore just the square root of the beam power response which is  
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since the receiver noise from the individual receiver channels is uncorrelated.  If beam is 
Gaussian then the receiver correlation beamwidth will be 2  times the power beamwidth.  
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2]  Sky noise correlation beamwidth 
 
If 2 beams are looking at a uniform sky brightness the sky noise correlation between them is 
given by the auto convolution of the beam pattern since: 
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where b(x) is the beam response in one dimension.  For a Gaussian beam pattern 
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where w = full width at half power points. 
 
And the correlation beam pattern is 
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where t = separation between the beams  
 
If the spectra from N beams are added with equal weighting the one sigma noise is 
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so that if the beams are uncorrelated the noise decreases by 1 N  otherwise if the correlation 
beam pattern is Gaussian and the beams are uniformly spaced in a line 
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where t=spacing between the beams when N is large the expression simplifies to  
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and sigma approaches a limit of 1 N when the beams are spaced about 1.5 beamwidths apart 
and adding more beams to cover the same total span will not significantly improve the SNR.  
This happens because the beams become correlated the more closely they are spaced. 
 
3] Comparing 5 vs 3 beams 
 
A specific case considered is 3 beams with 12 degrees between beams and 5 beams with 6 
degrees between beam centers.  The total span is 24 degrees in each case.  If we first assume that 
the expected D1 spectrum is the same for each beam  
 
For 3 beams: 
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where ( ) ( )
11 222 log 2ea t w=  

 t = 12 degrees 
 w = beamwidth = 13 degrees 
 
The noise is higher for the case of 5 beams because uniform weighting is not optimal in the 
presence of correlation between measurements.  Now consider the case of 3 beams spaced 12 
degrees apart with unequal signals in each beam.  For simplicity consider the symmetrical case 
of a difference between the center and the outer beams.  In this case the  
 

 ( ) ( )2 2
2

2 2 2 41 2 1 2 4 2a aS wb w we w e
N

− −⎛ ⎞ = + + + +⎜ ⎟
⎝ ⎠

 

where b = relative strength of signal in the outer beams  
 w = relative weight applied to the outer beams 
 
The solution for optimum SNR is given by 
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and in this case 0.678σ =  which is slightly better than the case of uniform weighting.  If there is 
a 25% weaker signal expected from the outer beams then b=0.75 and the optimum weight of 0.8 
results in a value of sigma of 0.822 for the optimum combination of the 3 beams.  The actual 
case of optimizing the detection of the D1 line from the combined observations of several 
simultaneous beams is even more complex as the expected spectrum is different for each beam.  
 
In this case we need to consider the weighted least squares solution to a particular line profile.  
The sigma spared in the least squares is given (from memo #56) by  
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If the noise is uncorrelated from frequency to frequency and from beam to beam this simplifies 
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=  because the autocorrelation of the noise is a delta function.  The 

expression can also be simplified if only one parameter is estimated and the weighting is uniform 
to 
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where f is the expected line profile. 
 
If the beams are correlated with coefficient C the one sigma error is approximately degraded by a 
factor of ( )

1
21 2C+  compared with uncorrelated beams.  For beams 12 degrees apart the 

correlation C is about 0.28 so that any calculation of the one sigma noise from the covariance 

matrix becomes ( ) ( )
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Figure 1 shows the fit to the beams at Galactic longitudes 171 and 183 degrees combined for 
data through day 299 of 2004.  The individual beams give amplitudes of 2.6 and 2.4 ppm and 
SNRs of 3.3 and 2.4 respectively.  Without correction for the correlation between beams the 
SNR of the fit to expected profiles for beams combined is 4.0.  After application of the 
correlation correction the SNR drops to 3.2. 
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