MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

December 18, 2006

Telephone: 781-981-5407 Fax: 781-981-0590

To: EDGES Group From: Alan E.E. Rogers Subject: EDGES data analysis

1] Spectrum calibration and bandpass removal

The EDGES radiometric spectrometer takes spectra in 3 switch positions.

Sw posn.

0 Ambient load

1 Ambient load + calibration noise 2 Ambient load + antenna input

If the effects on mismatch are ignored

$$p_0 = g\left(T_L + T_R\right)\left(1 + n_0\right) \tag{1}$$

$$p_{1} = g \left(T_{L} + T_{R} + T_{cal} \right) \left(1 + n_{1} \right) \tag{2}$$

$$p_3 = g(T_A + T_R)(1 + n_2)$$
 (3)

where

p_0, p_1, p_2	are the power spectra
g	frequency dependent gain or bandpass
$T_{ m L}$	Ambient load temperature
T_R	Total receiver noise
T _{cal}	Calibration noise
T_{A}	Antenna temperature
n_0, n_1, n_2	Gaussian noise = $(b\tau_i)^{-1/2}$
b	Resolution bandwidth (Hz)
$ au_i$	Integration time (sec)

From equations 1,2,3

$$T_{A} = T_{cal} (p_{2} - p_{0}) / (p_{1} - p_{0}) + T_{L}$$

$$= \frac{T_{cal} g(T_{A} - T_{L} + n_{2} (T_{A} + T_{R}) - n_{0} (T_{L} + T_{R}))}{g(T_{cal} + n_{1} (T_{L} + T_{R} + T_{cal}) - n_{0} (T_{L} + T_{R}))} + T_{L}$$

$$= [(T_{A} - T_{L}) + n_{2} (T_{A} + T_{R}) - n_{0} (T_{L} + T_{R})]$$

$$\times [1 + n_{1} (T_{L} + T_{R} + T_{cal}) T_{cal}^{-1} - n_{0} (T_{L} + T_{R}) T_{cal}^{-1}]^{-1} + T_{L}$$

$$\approx T_{A} + n_{0} ((T_{L} + T_{R}) (T_{A} - T_{L}) T_{cal}^{-1} - (T_{L} + T_{R}))$$

$$+ n_{1} (T_{L} + T_{R} + T_{cal}) (T_{A} - T_{L}) T_{cal}^{-1} + n_{2} (T_{A} + T_{R})$$

$$\approx T_{A} - n_{0} (T_{L} + T_{R}) + n_{1} (T_{A} - T_{L}) + n_{2} (T_{A} + T_{R})$$
when $T_{cal} >> T_{L}$

If the total time for a 3 position switch cycle is T and f_0, f_1 and f_2 are the fractions of time spent in each position the noise in a measurement of T_A is

$$\left[\left(f_0 b T \right)^{-1} \left(T_L + T_R \right)^2 \left(f_1 b T \right)^{-1} \left(T_A - T_L \right)^2 + \left(f_2 b T \right)^{-1} \left(T_A + T_R \right)^2 \right]^{\frac{1}{2}} \\
\simeq \left(5/2 \right)^{\frac{1}{2}} b^{-\frac{1}{2}} T^{-\frac{1}{2}} \left(T_A^2 + T_L^2 + 2 \left(T_A - T_L \right)^2 \right)^{\frac{1}{2}}$$

when TR is small and f_0 , f_1 and f_2 are 2/5, 1/5, 2/5 respectively. For example if $T_A = T_L = 300 \text{K}$ and T = 30 sec (b = 122 kHz) $\Delta T_A \text{ rms} \sim 550 mK$

If the results of 100 cycles (~ 1 hour) are averaged and the resolution is smoothed to 1 MHz the rms noise is reduced to approximately 20 mK.

2] RFI reduction

There are a number of options for RFI reduction. The most extreme is to excise any cycle which has any spectral point above 10 sigma. A less extreme approach is to exclude spectra channels which exceed 10 sigma or some other fixed threshold.

3] Processing method

- a. Perform calibration on each cycle using equation (4)
- b. Search for 10 sigma deviations in residuals to sliding polynomial fit of n terms over m spectral points. Mark rfi channels and save rfi spectrum separately.
- c. Remove cable ripple by fitting ripple period plus polynomial if in absolute mode.
 - cable x (x = cable length in ft)
- d. Correct for cable attenuation
- e. Correct for antenna VSWR and balun loss
- f. Calculate VSWR if in VSWR mode
- g. Remove polynomial with n terms control npoly n (default 0)
- h. Plot waterfall with max scale of 10ⁿK

control -water n

For averages

- *i.* Average results of each cycle keeping rfi removed points separate for plotting in blue. Also estimate noise for each spectral point.
- j. Remove bestfit polynomial from average
- k. Smooth over n spectral points Control: - smooth n (default 0)
- l. Set linear plot scale max and min Control: - lin max_min (default 0-0)
- *m*. Convert to fractional units if desired Control ppm 1 (default 0)

The steps c thru c are controlled by the keyword "cor"

- cor 1	EOR mode – no cable correction
- cor 2	EOR mode – corrects for cable
- cor 3	absolute antenna temperature
- cor 4	- not used
- cor 5	VSWR mode – returns reflection coefficient