## EDGES MEMO #251 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886

May 25, 2017

*Telephone*: 617-715-5533 *Fax*: 781-981-0590

To: EDGES Group

From: Alan E.E. Rogers

Subject: Simulations of signature detection with small ground plane.

EDGES lowband systems currently use a large ground plane in order to reduce both the ground loss and beam chromaticity. In order to evaluate the potential for additional deployments without a large ground plane systems with small ground planes are studied. For small square ground planes in the range of 1 to 4 meters the beam chromaticity increases as the ground plane size is increased while the ground loss decreases with ground plane size.

It is not until the ground plane exceeds the  $20 \times 20$  m with added perforations that chromaticity drops to approach the chromaticity of the small ground planes but the ground loss could be a serious problem so full simulations are needed to find the best compromise.

|                            |       | 4       | 5       | 6       |
|----------------------------|-------|---------|---------|---------|
| Ground plane size          | Loss  | Amp (K) | Amp (K) | Amp (K) |
| 14 × 14 m                  | 0.005 | 0.30    | 0.52    | 0.50    |
| 5.6 × 5.6 m                | 0.04  | 0.25    | 0.55    | 0.51    |
| $4.2 \times 4.2 \text{ m}$ | 0.08  | 0.46    | 0.50    | 0.53    |
| 2.8 × 2.8 m                | 0.18  | 0.01    | 0.80    | 0.58    |

Table 1 simulated loss (as a fraction) and signature amplitude for various ground plane sizes using blade antenna on square ground plane over soil with dielectric 3.5 and conductivity 2e-2 S/m

Table shows amplitudes of 0.5 K signature at 78.5 MHz, width 18.5 MHz and  $\tau$ =7 for 4, 5 and 6 term polynomial removed and frequency range 60-99 MHz.

To illustrate the relative effects of loss and beam chromaticity Figure 1 and Figure 2 show the residuals without added signature for loss and beam respectively with 4 polynomial terms removed. While beam effects tend to average out over a range of GHA the loss effects increase in proportion to the sky noise.



Figure 1. Simulated data for 2.8×2.8 m ground plane loss with 4 polynomial terms removed.



Figure 2. Simulated beam effects for lowband blade over 2.8×2.8 m ground plane with 4 polynomial terms removed.