MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

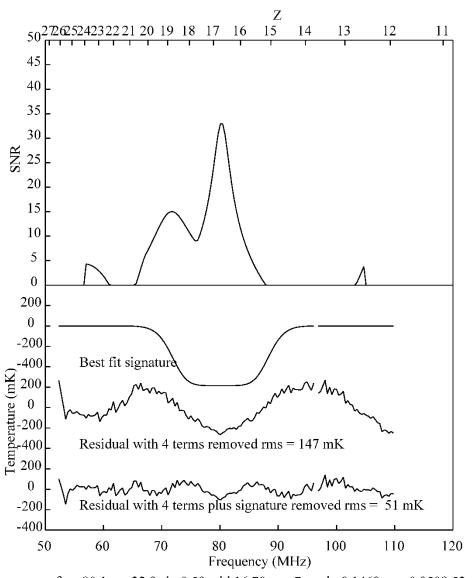
August 28, 2018

Telephone: 617-715-5533

Fax: 617-715-0590

To: EDGES Group

From: Alan E.E. Rogers


Subject: Preliminary results from lowband antenna on highband ground plane

On 15 August 2018 a lowband antenna was installed on the highband 5.35×5.35 m solid ground plane with 4.2×5 m mesh sections to address concerns that bad ohmic contacts between the lowband 2×2 m solid sections and the outer mesh could be responsible for the absorption signature.

Figure 1 shows the results of signature search using the 4 quasi-physical terms of the alternate polynomial discussed in memo 278. Owing to the large beam chromaticity of a small ground plane the GHA range was limited to 10 to 14 hours. The beam correction applied to the data was obtained from FEKO in GF mode using a uniform soil below the ground plane with dielectric constant 3.5 and the conductivity of 10⁻³ S/m measured near the ground plane in August 2018. The data span in Figure 1 is from 2018 227-2018 238.

Figure 2 shows the large sensitivity of the ground plane to the small change in conductivity of a uniform soil below the ground plane and extending to infinity calculated using FEKO. Even with the small change from 10^{-3} to 2×10^{-3} S/m and 5-terms removed the rms at GHA = 12 hours is 21 mK.

Figure 3 shows a signature search in which the signature from the Nature paper is used to simulate the spectrum using a soil conductivity of 10^{-3} S/m soil is processed using the beam chromaticity with 10^{-2} S/m soil.

freq 80.1 snr 32.9 sig 0.59 wid 16.70 tau $\,$ 7 rmsin 0.1469 rms 0.0508 52 - 110

Figure 1. Signature search for lowband antenna on highband ground plane 2018_227-208_238.

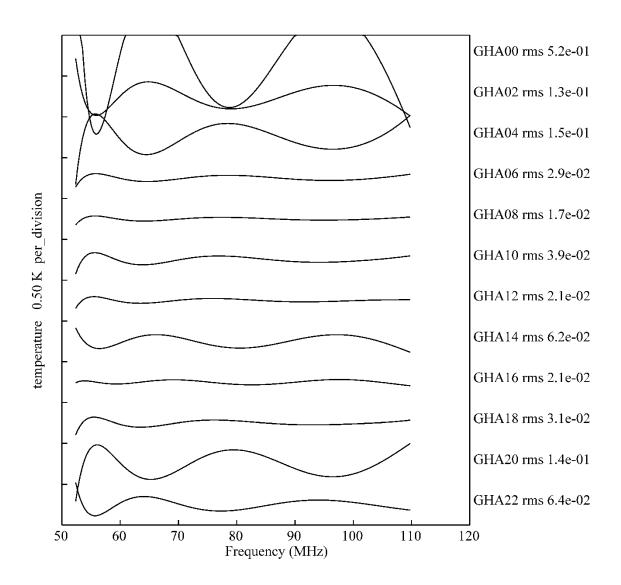
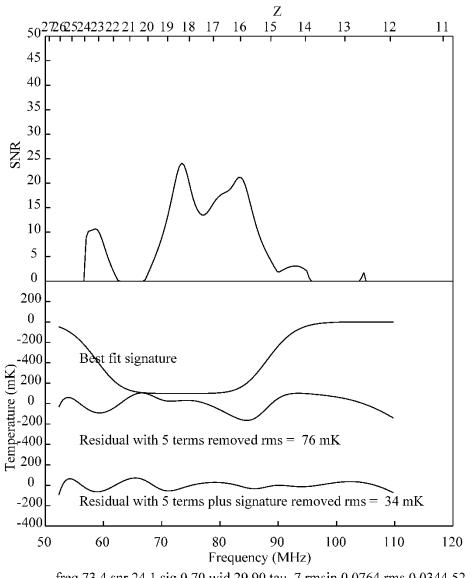



Figure 2. Beam chromaticity difference for soil 10^{-3} S/m and 2×10^{-3} vs GHA 5-terms removed.

freq 73.4 snr 24.1 sig 0.70 wid 29.90 tau 7 rmsin 0.0764 rms 0.0344 52 - 110

Figure 3. Simulation of signature from Nature paper using 10⁻³ S/m processed with 10⁻² S/m soil.