MASSACHUSETTS INSTITUTE OF TECHNOLOGY
HAYSTACK OBSERVATORY
WESTFORD, MASSACHUSETTS 01886

6 April 1992
Telephone: 508-692-4764
Fax: 617-981-0590
To: Holographers
From: Alan E.E. Rogers $A \subset \Sigma R$
Subject: Inversion of the sun scan data

If we assume that the sun is a uniform disk of angular radius s and the antenna beam response is circularly symmetric.

$$
R(x)=\int_{0}^{\pi} B(r) r F(r, s, x) d r
$$

where
$R(x)$ is the sun scan response at distance x from the center of the sun
$B(r)$ is the beam response at angle r from the center of the beam

$$
\text { for } \begin{aligned}
& F=2 \cos ^{-1}\left(\left(r^{2}+x^{2}-s^{2}\right) /(2 x r)\right) \\
& s-x \leq r \leq x+s \\
& F=0 \quad \text { for } \quad r>x+s \\
& F=2 \pi \quad \text { for } \quad r<s-x
\end{aligned}
$$

Since the integral can be approximated by a sum

$$
R(x)=\sum_{K=1}^{N} B_{k} r_{k} F(r, s, x)
$$

we can use linear least squares to estimate the beam coefficients B_{k}. While the coefficients for a 20 parameter fit are noisy the fits are very good and the rms contribution to roughness scales smaller than seen by the holography can be estimated:

$$
m m s=(-\operatorname{Ln}(1-A))^{1 / 2}(\lambda / 4 \pi)
$$

where

$$
A=\sum_{M}^{N} B_{k} r_{k} / \sum_{1}^{N} B_{k} r_{k}
$$

$$
\begin{aligned}
r_{N} & =\text { maximum extent of sunscan }\left(\approx 0.6^{\circ}\right) \\
r_{M} & =\text { maximum extent of holography } \\
& =(1.44 \times 12 / 115 \text { for } 91 \times 91, \text { sunscan at } 115 \mathrm{GHz})
\end{aligned}
$$

The results were as follows:

Sunscan Date	Scan \#	Small scale rms mils
2 March 1992	$1 \& 2$	5.4
2 March 1992	$3 \& 4$	5.6
30 March 1992	1	4.9
30 March 1992	2	5.0

The attached figure shows sample inversions using 20 and 80 coefficients for the beam.

