MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

25 April 2007

Telephone: 978-692-4764 Fax: 781-981-0590

To: Mark 5 Development Group

From: Brian Fanous

Subject: DOM VSI Operation

Initialization

Task	Parameters	Comments
1. Assert PLX reset to DOM.		
2. Turn interrupt propagation from PLX to CPU off.		Clear Interrupt control reg in I/O space. This won't be done once the interrupt handler is working.
3. Deassert PLX reset to DOM.		DOM is initialized to known state. All DOM blocks are disabled. No data flow.
4. Set VSI Mode.		Set VSI mode in <dom control="" reg="">. Clear vsio_run bit.</dom>
5. Setup RCLK		Set the internal clock to 32 MHz (not necessary for SU with a correlator but won't hurt) using <iclk control="">.</iclk>
		Set the appropriate configuration in the <rclk pps="" rate="" register="">: rclk_rate_code = 000; PPS_div_code = 010 for 32</rclk>
		MHz playback; If test mode (no correlator): use_internal_pps = 1 If non-test (using correlator)
		use_internal_pps = 0 After all that, clear the RCLK_TRISTATE_EN bit in the <dom control="" reg="">. Set the the mode field to SU in the</dom>
6. Suppress PPSes		same register. Set suppress_pps bit in the <system pps="" register="" suppress=""></system>
7. Enable timing block.		Set the timing_en and bocf_gen_en bits in the <enables register="">. RCLK begins at output.</enables>

8. Assert reset to all non-	In the <dom resets0=""> register set:</dom>
running, VSI relevant blocks.	fpdp_xface_rst, fpdp_fifo_rst,
	strip_header_rst, sh_fifo_rst,
	unpack_xbar_rst, xbar_ram_rst,
	cfdr_rst, delay_gen_rst, vsio_rst
	bits.
	In the <dom resets1=""> register set:</dom>
	sdram_xface_rst, fpdp_dcm_rst bits.
9. Tell StreamStor to start	"play=off", "set_scan=?", "play=on".
playing appropriate scan.	This starts the FPDP clk but no data
	flows to the DOM because
	fpdp_xface_en is cleared.
10. Take the FPDP DCM out of	Clear fpdp_dcm_rst in <dom< td=""></dom<>
reset now that the FPDP clk	Resets 1>. Now the FPDP DCM can
is going.	lock to the FPDP clock.
11. Wait 100 ms for DCM lock.	
12. Take all blocks out of reset.	Clear < DOM Reset0> and < DOM
	Reset1>.

Front End:

Front End:		
1. Configure DOM Front End.	<streamstor 0="" invalid="" reg=""></streamstor>	This configures all blocks of
	<streamstor 1="" invalid="" reg=""></streamstor>	the DOM before the RAM
	<dim invalid="" reg0=""></dim>	buffer. The blocks are not yet
	<dim invalid="" reg1=""></dim>	enabled. If Phase Cal is
	<disk frames="" per="" second=""></disk>	implemented, then phase
	<xbar regn="" setting="" slice=""></xbar>	increments are written here.
	(N=0:31)	
	<pre><unpack code="" register=""></unpack></pre>	
2. Configure Phase Cal/State		If implemented, phase cal and
Count		state count are setup here.

Back End:

_ *****		
1. Load Delay parameters	<delay error="" reg0=""></delay>	These should all be set to 0
	<delay error="" reg1=""></delay>	
	<delay rate="" reg0=""></delay>	
	<delay rate="" reg1=""></delay>	

Initial values for output:

1		
1. Load SDRAM start address	<sdram address0=""></sdram>	This is the address in the SDRAM that
	<sdram address1=""></sdram>	the output data will start from at the
		end of the next BOCF.

Begin filling DOM buffers

finish locking. DCM1 sure the	Status Register bits DCM0 and and sdram_clk_stopped. Make the DCM0 and DCM1 bits are '1'
ensures okay.	ram_clk_stopped is '0'. This s that the SDRAM clocks work vsio_run bit in the <vsi output<="" td=""></vsi>
data fro	guration Reg>. This will keep om flowing out of the DOM locks are enabled.
implem turned will be begins	se cal and state count are nented, phase cal interrupts are on here. Phase Cal interrupts a generated as soon as data to flow into the DOM and the serviced throughout the
DOM set)	e fdpd_xface_en, strip_header_en, unpack_xbar_en, xbar_ram_en, sdram_arbiter_en, sdram_core_en, sdram_rcvr_en, delay_gen_en, vsio_en, timing_en (should already be
	or sdram_init_done bit in s Register>

Begin VSI Output

- 8 · · · · · · · · · · · · · · · · · ·	
1. Enable the ROT1PPS	Set the ROT1PPS_IM bit in the
interrupt	<dom interrupt="" mask="" register=""></dom>
2. Wait for a ROT1PPS	
interrupt	
3. Turn VSI output on	Set the vsio_run bit in the <vsi< td=""></vsi<>
	Output Configuration Register>.
4. Unsupress a PPS.	Clear the suppress_pps bit in the
	<system pps="" register="" suppress=""></system>
5. Wait for a ROT1PPS	Output begins now.
interrupt	
6. Supress PPSes.	Set the suppress_pps bit in the
	<system pps="" register="" suppress=""></system>

While Running
When a data jump (delay shift) is required

When a data jump (detay sinity is required		
1. Load SDRAM start address	<sdram address0=""></sdram>	This is the address in the SDRAM that
	<sdram address1=""></sdram>	the output data will start from at the
		end of the next BOCF.
2. Unsupress a PPS.		Clear the suppress_pps bit in the
		<system pps="" register="" suppress=""></system>
3. Wait for a ROT1PPS		Output begins now.
interrupt		
4. Supress PPSes.		Set the suppress_pps bit in the
		<system pps="" register="" suppress=""></system>

To Stop Playback

1. Stop playback at the end of	Clear the vsio_run bit in the <vsi< th=""></vsi<>
the current second.	Output Configuration Register>. Data
	output stops at the end of the
	current ROT second.