MARK 5 MEMO \#056

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY
WESTFORD, MASSACHUSETTS 01886
updated November 5, 2007
Telephone: 781-981-5407
Fax: 781-981-0590
To: Mark 5 Group
From: Alan E.E. Rogers and Arthur Niell
Subject: Performance characteristics and operation of Updown converter
Performance results based on the block diagram of figure 1 are as follows:

Input frequency range	$1-13 \mathrm{GHz}$
Up conversion L.O. range	$23-33 \mathrm{GHz}$
Up conversion I.F. range	$20-22 \mathrm{GHz}$
Down conversion L.O.	22.5 GHz
I.F. range prior to Nyquist filters	$0.5-2.5 \mathrm{GHz}$
Output Frequency ${ }^{5}$	$22.5-4 \mathrm{x} \mathrm{luff}+$ input GHz
Luff frequency range	$5.75-8.25 \mathrm{GHz}$
Minimum step size for Luff	100 kHz
Minimum Luff step size for repeatable phase	1 MHz
Bandpass ripple	4 dB peak to peak
Nominal input power ${ }^{1}$ /bandwidth	$-30 \mathrm{dBm} / 12 \mathrm{GHz}$
Spurious rejection ${ }^{2}$ (excluding L.O. sidebands)	-70 dB
Spurious signals (Luff 3 ${ }^{\text {rd }}$ harmonic ${ }^{3}$	-50 dB
Spurious signals (excluding Luff 3rd harmonic)	-70 dB
Conversion gain (atten. 0 dB)	60 dB
	30 dB
Noise figure	8 dB
Cross-talk between pol'n channels	$\sim-50 \mathrm{~dB}$
Maximum input power $/$ /bandwidth	$-20 \mathrm{dBm} / 12 \mathrm{GHz}$

Notes:
1] Nominal input power of -30 dBm implies that a 12 GHz bandwidth LNA and $2^{\text {nd }}$ stage with 50 K system needs 51 dB gain to supply the nominal signal level to the updown converter.
2] Spurious rejection is the rejection of unwanted responses due to images etc. relative to the desired signal.
3] Spurious signals levels are signals which originate within the updown converter and are measured relative to the nominal input level. The worst offender is the $3^{\text {rd }}$ harmonic of the Luff synthesizer for settings between 6.667 and 7.333 GHz which lies within the I.F. passband
4] Recent measurements at the Westford site show radar signal levels can leak into the sidelobes of the broadband feed at a level of up to about -40 dBm . In this case it would be better to use an LNA with about 28 dB gain before the updown converter to ensure the first mixer sees no more than 0 dBm . The updown converter will contribute about 3K out of a 53 K system. The interference free input level to the converter will be $-41 \mathrm{dBm} / 12$

GHz and the outputs to the DBE will be between -25 to $+5 \mathrm{dBm} / 500 \mathrm{MHz}$, depending on the settings of the attenuators.
5] For an input frequency x, the output frequency y is given by

$$
y=22.5-4^{*} f_{\text {Luff }}+x
$$

i.e. the effective LO frequency of the conversion is $22.5-4 * f_{\text {Luff }} \mathrm{GHz}$. The conversion is upper sideband. Frequencies are in GHz .

Inputs to the UDC are:
a. Two inputs in the range 1.0 to 13 GHz . Total input power in 12 GHz should be about -30 dBm . Maximum input power in 12 GHz is -20 dBm .
b. Reference frequency from the maser of 5 MHz or 10 MHz . For 5 MHz a doubler is used to produce 10 MHz for internal use. For 10 MHz input the doubler must be removed.

Outputs from the UDC are:

a. Two IF outputs are available on the front panel with signal in the range selected by the internal Nyquist zone filters. For this experiment the $2^{\text {nd }} \mathrm{NZ}$ is used, covering approximately $0.512-1.024 \mathrm{GHz}$. The filter has a center frequency of 768 MHz and a bandwidth of 480 MHz.
b. A second output is available internally for each IF. The output is before the 30 dB attenuator and Nyquist zone filter, so covers the range $0.5-2.5 \mathrm{GHz}$. The gain is +29 dB relative to the input. It can be routed to the connector on the rear panel for external access, perhaps as input to the Mk4 rack if a filter is included in the path, e.g. a $2^{\text {nd }} \mathrm{NZ}$ filter corresponding to that used internally.
c. There is a 10 MHz output available internally that is coherent with the 5 MHz or 10 MHz input reference frequency. It can be routed to the connector on the rear panel for external access if this connector is not being used to output the IF that is available for an additional Nyquist zone. See the UDC schematic below

Local control of the frequency and gain:

The gain through the UDC is 60 dB minus the attenuation in the programmable attenuator, which can take on values between 0 dB and 30 dB . So the net gain is 30 to 60 dB

The Luff frequency in MHz and the attenuator settings in dB are displayed on the front panel under control of the STAMP code. The display alternates between the frequency and attenuator settings. The attenuator values are given as channel A then channel B, separated by a period. To manually change the frequency or attenuators press and hold down the push button switch until the digit you want to change is flashing, then pulse the switch to increment the digits. When complete, hold down the button until the normal (not flashing) display is reached. An out-oflock condition or illegal frequency is indicated by flashing decimal points.

Remote control:

To control remotely send at 9600 baud the keyword "freq" followed by the frequency (in MHz), attenuator 1 (in dB), attenuator 2 (in dB), followed by a CR.
The unit should respond with (this can easily be changed):
Freq xxxx yy zz OK CR
if in lock, or
Freq xxxx yy zz errcode CR if there is an error or the unit doesn't lock.

Simplified block diagram for connectorized up/down converter for DBE
Figure 1 Block diagram

$\begin{array}{r} 2.875= \\ 2.625 \\ 1.625 \end{array}$	```VLBI UpDown Converter INPUTS \(1-12 \mathrm{GHz}\)```			LO/4 MHz
		10 MHz IN	$O \mathrm{AO}$	$\begin{array}{\|l\|} \hline 2.0+ \\ \times 0.75+ \\ \hline \end{array}$
	00	\bigcirc	$\bigcirc \mathrm{B} \bigcirc$	\bigcirc
1.625	$\mathrm{A} \quad \mathrm{~B}$	$+5-+10 \mathrm{dBm}$	OUTPUTS	Push to Set

Front panel viewed from the front
holes are all 0.250"

Rear panel viewed from inside to outside

Updown panels aeer 13 oct07

Figure 2 Updown panels

Figure 3 Drilling plan Photo

Figure 4 Photo

```
' {$STAMP BS2pe}
bb VAR Nib
freq VAR Word
freqp VAR Word
freq3 VAR Nib
freq2 VAR Nib
freq1 VAR Nib
freq0 VAR Nib
frq3 VAR Nib
frq2 VAR Nib
frq1 VAR Nib
frq0 VAR Nib
attn VAR Byte
attn1 VAR Byte
attn2 VAR Byte
attn1p VAR Byte
attn2p VAR Byte
ttn11 VAR Nib
ttn10 VAR Nib
ttn20 VAR Nib
ttn21 VAR Nib
fh VAR Nib
prs VAR Bit
alt VAR Bit
alt2 VAR Bit
attn11 VAR Nib
attn10 VAR Nib
attn21 VAR Nib
attn20 VAR Nib
cnt VAR Byte
sw VAR Bit
lock VAR Bit
fhh VAR Bit
outr VAR Bit
lock2 VAR Bit
rcv VAR Bit
pau VAR Byte
serstr VAR Byte(4)
'p5 LE for attn1
'p6 CLK
'p7 DATA
'p14 LE for attn2
'p8 rs232 pin 2 from luff
'p9 rs232 pin 3 to luff
'p4 rs232 pin 2 to PC
'p3 rs232 pin 3 from PC
'p10 rs323 pin4 lock indicator from luff
'p13 alarm from 22.5 GHz PLO
'p0 button
'p15 display data
DIRS = %11000010111110000
freq =5750 'default
attn1 = 6
```

```
attn2 = 7
fh = 0
alt =0
alt2 = 0
prs = 0
cnt = 0
sw = 0
freqp = 0
fhh = 0
attn1p = 255
attn2p=255
outr = 0
pau = 5
rcv = 0 'data received flag
start: IF (cnt > 0 AND fhh = 0) OR fh > 0 THEN skp
    SERIN 3,16780,1000,skp,[WAIT("freq"),DEC freq, DEC attn1, DEC attn2]
    rcv = 1
' SEROUT 4,16780,["freq ",DEC freq," ",DEC attn1," ",DEC attn2,CR]
' SERIN 3,84,1,defau,[DEC freq]
skp: pau = 40
    IF cnt > 0 AND fh =0 AND fhh = 0 THEN skpp
    IF cnt > 12 THEN skpp 'increment fh while pressed
    IF cnt > 0 AND cnt < 12 AND sw = 0 AND fhh = 0 THEN skp3
    GOTO skp2
skp3: prs = 1
    cnt = 0
    GOTO skp2
skpp: fh = fh + 1
    prs = 0
    cnt = 0
    fhh = 1
    IF fh < 7 THEN skp2
    fh = 0
    alt2 = 0
    alt =0
skp2: IF sw = 1 THEN skp4
    fhh = 0
    cnt = 0
skp4:
' DEBUG "here fh=", DEC fh," cnt=", DEC cnt,"sw ", DEC sw," prs ",DEC prs,CR
    GOSUB disp
    GOSUB atten1
    GOSUB atten2
    GOSUB luff
    GOSUB plo
    IF rcv = 0 THEN skp5
    IF lock = 0 OR outr = 1 OR lock2 = 0 THEN skp6
    SEROUT 4,16780,["freq ",DEC freq," ",DEC attn1," ",DEC attn2," OK",CR]
    rcv = 0
    GOTO skp5
skp6: SEROUT 4,16780,["freq ",DEC freq," ",DEC attn1," ",DEC attn2," ",DEC lock+lock2+outr,CR]
    rcv = 0
skp5: IF fh > 0 THEN skp
    pau = 5
    GOTO start
```

```
disp: freq3 = freq / 1000
    freq2 = freq / 100-(freq3 * 10)
    freq1 = freq / 10-(freq3 * 100) - (freq2 * 10)
    freq0 = freq - (freq3 * 1000) - (freq2 * 100) - (freq1 * 10)
    frq3 = freq3
    frq2 = freq2
    frq1 = freq1
    frq0 = freq0
    attn11 = attn1 / 10
    attn10 = attn1 - (attn11 * 10)
    attn21 = attn2 / 10
    attn20 = attn2 - (attn21 * 10)
    ttn11 = attn11
    ttn10= attn10
    ttn21= attn21
    ttn20 = attn20
' DEBUG DEC freq3,DEC freq2,DEC freq1,DEC freq0,CR
    IF fh = 0 THEN disp0
    IF fh <> 1 THEN ddisp1
    frq0=10
    IF prs = 0 THEN f1
    freq0 = (freq0 + 1)//10
f1: alt = 0
ddisp1: IF fh <> 2 THEN ddisp2
    frq1=10
    IF prs = 0 THEN f2
    freq1 = (freq1 + 1)//10
    frq1 = freq1
f2: alt =0
ddisp2: IF fh<> 3 THEN ddisp3
    frq2=10
    IF prs = 0 THEN f3
    freq2 = (freq2 + 1)//10
    frq2 = freq2
f3: alt = 0
ddisp3: IF fh <> 4 THEN ddisp4
    frq3 = 10
    IF prs = 0 THEN f4
    freq3 = (freq3 + 1)//10
    frq3 = freq3
f4: alt = 0
ddisp4: IF fh <> 5 THEN ddisp5
    ttn21 = 10
    ttn20=10
    IF prs = 0 THEN a1
    attn2 = (attn2 + 1)//32
    attn21 = attn2 / 10
    attn20 = attn2 - (attn21 * 10)
a1: alt = 1
ddisp5: IF fh <> }6\mathrm{ THEN ddisp6
    ttn11 = 10
    ttn10=10
    IF prs = 0 THEN a2
    attn1 = (attn1 + 1)//32
    ttn11 = attn1 / 10
    ttn10 = attn1 - (attn11 * 10)
```

a2: \quad alt $=1$
ddisp6: IF prs $=0$ THEN disp0
freq $=($ freq $3 * 1000)+($ freq2 $* 100)+($ freq $1 * 10)+$ freq 0
prs $=0$
disp0: IF alt = 1 THEN disp2
IF alt2 $=1$ THEN sp0
IF lock $=0$ OR outr $=1$ OR lock2 $=0$ THEN spp0
SEROUT 15,84,["P",0,"~","D",frq3,frq2,frq1,frq0]
GOTO spp1
spp0: SEROUT 15,84,["P",15,"~","D",frq3,frq2,frq1,frq0]
spp1: alt2 = 1
GOTO sp1
sp0: SEROUT 15,84,["P",0,"~","D",freq3,freq2,freq1,freq0]
alt2 $=0$
sp1: PAUSE pau
alt $=1$
GOTO disp3
disp2: IF alt2 = 1 THEN sp2
SEROUT 15,84,["D",attn11,attn10,attn21,attn20,"P",2,"~"]
alt2 = 1
GOTO sp3
sp2: SEROUT 15,84,["D",ttn11,ttn10,ttn21,ttn20,"P",2,"~"]
alt2 $=0$
sp3: PAUSE pau
alt $=0$
disp3: IF IN0 $=0$ THEN disp4
sw $=1$
$\mathrm{cnt}=\mathrm{cnt}+1$
RETURN
disp4: $\mathrm{sw}=0$
RETURN
luff: lock = IN10
IF freq = freqp THEN luff2
SEROUT 9,16468,[">03F",DEC freq,"0",CR]
SERIN 8,16468,100,luff2,[STR serstr\4]
' DEBUG STR serstr
outr = 1
freqp $=$ freq
IF serstr(3) <> "A" THEN luff2
outr $=0$
' freqp = freq
luff2: RETURN
plo: lock2 = IN13
RETURN
atten1: IF attn1 = attn1p THEN atten11
attn $=\operatorname{attn} 1 * 2$
' DEBUG DEC attn, " "
OUT5=0
FOR $\mathrm{bb}=1$ TO 6 'loop for 6 bits
OUT7=attn.BIT5 ' msb
PAUSE 1
PULSOUT 6,100 'pulse clock line
PAUSE 1
attn=attn*2 'left shift one bit
NEXT
OUT5=1

PAUSE 1
OUT5=0

- PAUSE 1000
attn1p = attn1
atten11: RETURN
atten2: IF attn2 = attn2p THEN atten22
$\operatorname{attn}=\operatorname{attn} 2 * 2$
OUT14=0
FOR bb = 1 TO 6 'loop for 6 bits
OUT7=attn.BIT5
PAUSE 1
' DEBUG BIT7 'msb of b0
PULSOUT 6,100
PAUSE 1
'pulse clock line
attn=attn*2
'left shift one bit
NEXT
OUT14=1
PAUSE 1
OUT14=0
PAUSE 1000
$\operatorname{attn} 2 \mathrm{p}=\mathrm{attn} 2$
atten22: RETURN
Figure 5 Stamp code listing

