Mark 6 usage examples (Rev 2.6d)
arw 2 Dec 2011
Note: only selected responses shown

Example 1: Initialize new module

vol_stack? ; Get Volume Stack;

lvol_stack? 0:0:: 1::8:: uninitialized,; uninitialized module in Slot 1

mod_init=1: HAYS0001 : 8; Initialize, assign MSN, erase all data on module
vol_stack?; Get Volume Stack

lvol stack? 0:0: A :1: HAYS0001/16/4096 : 8 : 8 : 0% : ready; Module assigned to Vol A
and is ready to record; 0% full

Mount module in Slot 2 that is protected (because it is full); erase module in preparation for recording

vol_stack?;
Ivol_stack? 0:0: A:1: HAYS0001/16/4096 : 8 : 8 : 0% : ready : Already mounted in Example 1
: B :2: HAYS0002/16/4096 : 8 : 8 : 99% :protected; 2" module assigned Volume B

vol_cmd = unprotect : B ; Unprotect in preparation for erase
vol_cmd = erase: B Erase all data on volume
vol_stack?;

Ivol_stack? 0:0: A:1: HAYS0001/16/4096 : 8 : 8 : 0% : ready : Vol ref A ready to record
:B:2:HAYS0002/16/4096 : 8 : 8 : 0% : standby; Vol ref B on standby

Example 2: Record a scan and do a quick check of the data

input_stream = add : RDBE1 : vdir : eth0 : 192.162.1.38; Define 1% input data stream, source, data format,
and specify IP filter

input_stream = add : RDBE2 : vdif : eth0 : 192.162.1.40; Define 2" data-input stream

record = on : 076-1233 : exp123 : wf; Start recording scan on volume A
vol_stack?;

Ivol_stack? 0:0: A:1: HAYS0001/16/4096 : 8 : 8 : 0% : recording: Vol ref A recording
...at schedule end of scan....

record = off ; Stop recording

scan_info?; Get summary scan info

Iscan_info? 0: 0 : A : Mk6-025 : 1: 076-1233_exp123_wf : complete : 2011h076d12h33m00s : 80 : 2
:HAYS0001:8.0:5.0:5.0:5.0:5.0:5.0:5.0:5.0:5.0; Disks are performing uniformly

scan_check?; Do quick data sanity check
Iscan_check? 0:0: A : 1: 076-1233_exp123 wf:2:

RDBEL : OK : vdif : 2011h076d12h33m01s : 79.9: 40.0: 4.0 :

RDBE2 : OK : vdif : 2011h076d12h33m01s : 79.9 : 40.0 : 4.0;

Example 3: Start recording with insufficient space left on ‘ready’ volume.

vol_stack?;
Ivol_stack? 0:0: A:1: HAYS0001/16/4096 : 8 : 8:99% : ready: Vol ref A ready (but nearly full)
:B:2:HAYS0002/16/4096: 8 : 8 : 0% :standby ; Vol ref B on standby

record = on : 076-1330 : exp123 : wf : 200; Start recording; estimated size 200GB

scan_info?; scan_info? query issued a few seconds later
Iscan_info? 0:0: B : Mk6-025 : 1 : 076-1330_exp123_wf : recording : 2011h076d13h30m:00s : 24 : 2 :
:HAYS0002:8:3.0:1.6:3.0:3.0:3.0:3.0:3.0:3.0; Disk 2 appears to be slow

Note recording has been switched to new volume (HAYS0002) since original ‘ready’ volume had insufficient space.
Querying the Volume Stack shows what happened.

vol_stack?;
Ivol_stack? 0:0: A :1: HAYS0002/16/4096 : 8 : 8 : 0% : recording: ‘Standby’ volume now at top of Volume Stack
:B:2:HAYS0001/16/4096 : 8 : 8 : 99% : protected; Full volume B now ‘protected’ and inactive

vol_cmd = dismount : B ; Dismount full volume B from vol stack

vol_stack?;
Ilvol_stack? 0:0: A : 1: HAYS0002/16/4096 : 8 : 8 : 0% : recording; Volume A continues to record

Example 4: Bond two modules into single ‘volume’ and start recording

Connect two modules that you want to ‘bond’ into a single volume.
vol_stack?;
Ilvol_stack? 0:0: A : 3: HAYS0003/16/4096 : 8 : 8 : 97% : ready: First module in Slot 3
:B:4:HAYS0004/16/4096 : 8 : 8 : 76% : standby; Second module in Slot 4;
Slots 1 & 2 empty

Modules must both be empty and ‘inactive’ before bonding.

vol_cmd = inactive : A: B ; Make vols A and B ‘inactive’

vol_cmd = unprotect: A: B; Must ‘unprotect” command immediately before erase
vol_cmd =erase: A:B; Erase all data on both modules

vol_stack?;

lvol_stack? 0:0: A : 3: HAYS0003/16/4096 : 8 : 8 : 0% : inactive: Module inactive
:B:4:HAYS0004/16/4096 : 8 : 8 : 0% : inactive; Module inactive

vol_cmd=bond: A:B; Bond A and B into single volume

vol_stack?;
Ivol_stack? 0:0: A : 3: HAYS0003/16/4096 : 8 : 8 : 0% : standby : Modules are ‘bonded’ into volume A and
: A4 :HAYS0004/16/4096 : 8 : 8: 0% : standby; automatically added to ‘standby’ list

record=on:.......... Start recording

vol_stack?;
lvol_stack? 0:0: A : 3: HAYS0003/16/4096 : 8 : 8 : 0% : recording : Recording to 2-module volume A
: A 4:HAYS0004/16/4096 : 8 : 8 : 0% : recording;

Example 5: Only one of a pair of ‘bonded’ multi-module volume is connected

vol_stack?;
Ivol_stack? 0:0: A :1: HAYS0005/16/4096 : 8 : 8 : 52% : partial_vol: Only partial volume connected
:A:0:HAYS0006/16/4096:8:0 : 0 :missing; The missing module is identified;
Slot# returned as 0
Connect the missing module

vol_stack?;
lvol_stack? 0:0: A : 1: HAYS0005/16/4096 : 8 : 8 : 52% : ready: = 2-module volume A ready to record;
: A 3:HAYS0006/16/4096 : 8 : 8 : 52% : ready; ‘missing module installed in Slot 3

Example 6: Force 8-disk module with missing/dead disk to be made ready for recording;
identify missing/dead disk

Connect the module. Undiscovered disk (perhaps bad) reduces disk count to 7 and causes ‘partial_vol’ status

vol_stack?;
Ivol_stack? 0:0: A : 1: HAYS0007/16/4096 : 8 : 7 : 67% : partial_vol; Only 7 disks discovered!

Might be good idea at this point to ‘dismount” module and re-seat data cables, or connect with new data cable(s) to
eliminate bad connection as cause of partial volume. Or you may force acceptance of 7 disks as follows:

vol_cmd = force: A ; Force acceptance of partial volume; data preserved

vol_stack?;
Ivol_stack? 0:0: A:1:HAYS0007/16/4096 : 7 : 7 : 67% : ready; 2-module volume A ready to record
(albeit with diminished data and data-rate capacity)

Identify serial number of missing/dead disk

disk_info? serial;
Idisk_info? 0:0: serial : A :1: HAYS0007 : 8 : SN1:SN2:-SN3:SN4:SN5:SN6:SN7:SN8; SN3 is missing/dead

Example 7: Check disks for uniformity of usage; find slow disk

vol_stack?;
lvol_stack? 0:0: A :1: HAYS0008/16/4096 : 8 : 67% : ready; Module is ready for recording

Get disk-by-disk usaage (GB) with volume (one module in this case)

disk_info? usage;
Idisk_info? 0:0: usage : A : 1: HAYS0008 : 8 : 698 : 699 : 698 : 698 : 152 : 699 : 699 : 698; 5™ disk appears slow

5" disk in list has much less data than other (152GB vs ~699GB on other 7 disks), so is likely slow.

disk_info? serial; Get corresponding disk serial#s
Idisk_info? 0:0: serial : A :1: HAYS0007 : 8 : SN1:SN2:-SN3:SN4:SN5:SN6:SN7:SN8;

SN5 is serial# of slow disk; we can now uniquely identify the slow disk and replace it.

