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Numerical solution of Maxwell's equations in parallel plate polarizer 

Shep and I have searched the literature for solutions of the parallel plate polarizer. An 
analytic solution was performed by Nobel Laureate Julian Schwinger when he worked at the 
radiation laboratory during WWII. Unfortunately, this solution is very complex and difficult to 
interpret. Also, only the results of the solution are given in the Waveguide handbook by 
Marcuvitz. In order to check Schwinger's results, those of Carlson and Heins (1947), and 
Lengyel (1950), we have used a numerical method made practical by the availability of modern 
computer power . 

. Numerical solution method 

If we use the coordinate system shown in Figure 1 the electric field for the mth mode is given by 

where 

Since 

±K,nZ- . Ey = cos(x1rm)e e-twt 

d = separation between the plates 

m = O is a plane TE wave, m = 1 is the only propagating mode between the plates. 
For modes M~2, Km are real, and the modes are evanescent. 

- aH v x E = -µ 0 -
a r 

(1) 

(2) 

(3) 



the components of magnetic field are 

Hz= [-1 l aEy 
iwµo ax 

For entering the parallel plates the electric field inside and outside the plates must be 
continuous except at metal boundaries so that 

Tcos1rx + L dmcosm1rx = (1 + R) + L cmcosmx1r 
odd even 

where T = amplitude of mode propagated into polarizer 
R = amplitude of reflected plane wave 
dm form odd = amplitude of evanescent modes between plates 
cm form even = amplitude of evanescent modes outside plates 

(4) 

(5) 

(6) 

Only odd modes (as defined by equation 2) can exist between plates because the electric field 
must be zero at x = ± ½. Only even modes can exist outside plates because the electric field 
must repeat in a continuous manner with a periodicity of 1 - as illustrated in figure 2. 

The corresponding equation for magnetic field component (Hx) is 

dmKmcosm1rx 
(K1/K0)T cos1rx - L 

odd Ko 

= (1-R) + L 
even 

(7) 

If equation (6) is satisfied then the equation for Hz will also be satisfied - so the problem is to 
simultaneously satisfy equations (6) and (7) . This is easily accomplished using matrix methods 
to find cm and dm. Another set of equations is needed for the boundary conditions of radiation 
leaving the polarizer . 

These are: 

(1 +R)cos1rx + L am cosm1rx = T + L bmcosmx1r 
odd 

(8) 
even 



and 

(KifK0 ) (1 -R)cos1rx + L 
odd 

= T- L 
even 

amKmcosm1rx 

Ko 
bmKmcosm1rx 

Ko 

(9) 

These equations can be solved for 2N modes using a range of N discrete values of x from zero 
to ((N-l)/2N). For the complete path through the polarizer the transmitted waves are cascaded 
and the reflections added with appropriate propagation phases. The numerical solutions are 
performed using the MATLAB program given in appendix 1. The loss and differential phase is 
plotted in Figure 3 for the dimensions of the polarizer built for use on Haystack at 86 GHz. 
The solution includes reflections to the second order. The differential phase shift differs from 
the simple theory which neglects reflections and the effects of energy storage in the evanescent 
modes. These results are in good agreement with those of Lengyel. The Schwinger solution 
from Marcuvitz (as interpreted by AEER) gives a reflection voltage that agrees well with our 
results but gives a phase shift that disagrees with our result and the result of Lengyel. We 
presume that our application of Schwinger's solution to calculate the phase path is incorrect. 

Ohmic losses 

If the evanescent modes are neglected the polarizer loss due to the finite conductivity of the 
metal vanes is given by 

8xaa " 2 -- (-) L nepers 
d AC 

(10) 

where [ 
1re] 1/2 Xo = 1/2 -;-

AC= 2d 

and L = length of polarizer 

The formula above is that of a waveguide of unlimited height. Evaluating the above with 

L = 5.2 mm 
d = 3.2 mm 
A = 3.5 mm 

(11) 

(12) 

(13) 

we obtain a loss of 0.2 % for brass (4 times the resistance of copper). When evanescent modes 
are included the losses are increased by about 50% by the enhanced currents near the edges of 
the plates . In practice, waveguide loss in the millimeter range often runs twice the theoretical 
owing to surface irregularities and defects on the scale of the skin depth (:::: 1 micron). Thus a 
conservative estimate for ohmic loss is about 1 % . 



Plate thickness 

The numerical solution can easily be made for the case of finite plate thickness by using the 
appropriate wave K values (modified by the decreased separation inside the polarizer) on each 
side of the boundary and imposing the constraint of zero tangential E-field on the front edge of 
the plates. Figure 4 shows the solutions for the E- and H-field which satisfy the boundary 
conditions. The currents in the plates which produce the H-field discontinuity concentrate at 
the corners of the plate edges. As the plate thickness is increased the reflection coefficients are 
increased and changed producing added loss. Table 1 gives the results for various thicknesses. 

Thickness Thickness Loss without Loss with 
mm Percent scatter 100 % scatter 

0 0% 0.01% 1.6% 

0.32 10% 0.1% 2.5% 

0.64 20% 3.4% 4% 

1.28 40% 33% 20% 

Table 1. Frequency = 86 GHz; d = 3.2mm; 1 = 5.2mm 
Reflection losses for various plate thicknesses 

The loss is given for 2 cases. In the first case it is assumed that there are only the modes 
appropriate for an infinite number of plates while in the second case it is assumed that all the 
reflected energy is scattered away without propagating . This scattering problem is discussed in 
the next section. As another test of the numerical method, Figure 5 shows the effects of 
thickness on the reflection coefficient for a case studied by Lengyel. The numerical model 
shows the shift in the reflection null evident in Lengyel 's data for plates of 0.313 cm thickness. 

Scattering losses 

The parallel plate theory assumes that there are an infinite number of plates while in practice 
there are only a few (5-6 in the case of Haystack) plates across the beam aperture. With a large 
number of plates there is little scattering of the reflected waves in directions other than in the 
direction of the main reflected beam. The scattering results from the "diffraction pattern" of the 
grating formed by the radiation from the evanescent mode currents on the plates. 

The effect of scattering is assumed to subtract energy from the main beam of the reflections and 
thereby in the limit reduce their forward scatter to zero so that all the reflection energy is 
removed from the transmitted signal. For example, if the voltage reflection is 10% for each 
interface then each interface will lose 1 % in power for a total of 2 % . Table 2 gives the results 
of calculations of the percentage of scatted energy as a function of the number of plates in the 
beam. 



# Plates Scatter % 

3 

5 

7 

11 

15 

. 90 

75 

60 

30 

10 

Table 2. Frequency = 86 GHz; d = 3.2 mm 
Percentage of reflected power scattered 

Non-uniformity in plate separation 

Variations in plate separation produces differences in the phase path for each section of the 
polarizer. A 5 % separation change makes a 10° phase error and a 3 % power loss. 

Summary of losses 

For the 86 GHz polarizer design the losses are estimated to be as follows: 

1] Ohmic loss 1 % 
2] Reflection losses (with 1 plate) 0.5 % 
3] Non-uniformity in plate separa tion 3 % 

(5 % variation) 
Total loss 4.5% 
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Figure 1 Polarizer Geometry 
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Figure 2 Illustration of modes 
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Rx f i e ld 

d=3.2 mm 
freq=86 GHz 
plate thickness - 0.64 mm 
# modes = 34 

0 -
Lmidway between plates edge of plate J 

H 
outside 

I 

E and 
H inside 

center of plate~ 

Figure 4 E an d H fi e ld s 
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