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Interferometric phase noise and SNR 

The probability distribution of interferometric phase O due to Gaussian noise is 
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where s is the SNR (be definition). For large SNR 
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Loss factor and the closure phase noise 

It is convenient to define a loss factor[ll 
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where 1
0 and 11 are hyperbolic Bessel functions. For a single sample of closure phase 

L(sc) = L(s 1) L(s 1) L(s 3) 
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where s1, s2, and s3 are the SNRs of the 3 baselines that form a closure triangle and sc is the 
SNR of the closure phase. sc is given by the inverse of the loss function 
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where P is the convolution of interferometric phase probability distributions. For the purposes 
of estimating the rms closure phase the same distribution as given in Equation 1 can be used. 
At this time this has only been shown to be true by simulations to an accuracy of 1 % . (Possibly 
it can be proved that there is an equality.) 

Phase noise of closure phase averages 

Closure phases of many data segments can be averaged to improve the SNR. In 
practice, either the closure phasor or the bispectrum are averaged. 
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where Wi = 1 for phaser averaging and Wi = (a1aJ!1,3)i for the bispectrum 

We consider three cases as follows: 

Case 1: Low SNR on one baseline 

In this case the SNR of the sum S is independent of the segmentation since 

and the SNR of each segment decreases with the square root of the segment duration 

s = s N - l/2 
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where s
0 is the SNR of the full unsegmented data set, and 

S = sN 112 = s 0 (11) 

when segments are averaged . However, Equation 11 is only valid for the bispectrum. In the 
case of the phaser average for s < < 1 
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N 
so that the SNR of the phaser average is reduced by a factor of (1r/4)112 or about 10% of the 
SNR is lost. 

Case 2: Equal SNR on all three baselines 

Sc= L-1(L3(s)) z [ ;) s3 for s < <l 

z [ ½ r,2 s for s > >l 

and s ~ s Nl/2 ~ C 

In both Case 2 and 3, the improvement in SNR with N 112 is only approximate and like in case 1 
there is a difference in averaging phasers and the bispectrurn. Figure 1 shows the SNR and rrns 
closure phase as a function of segment length for Case 2 and 3 for a value of s
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= 7. The 

bispectrum is better than phaser averaging , however, better performance for some ranges of 
segment SNR can be achieved by making 

wi = (a1a2)/12 

""'i = (a1az1-1hl/3 

and we call this the weighted triple product. 
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The reason for the non-optimal behavior of the bispectrum and phasor averaging is the result of 
noise in the weight Wi which results in imperfect weighting and is most pronounced for s < 3. I 
have only been able to analyze this for Case 1. For cases 2 and 3, I had to resort to computer 
simulation. 

Figure 1 illustrates the relative insensitivity of the SNR to the segmentation as long as the SNR 
for each segment is greater than unity. It is therefore advantageous to shorten the segments to 
this point to minimize the signal loss through atmospheric phase fluctuations. An extremely 
complex analysis of the noise in the closure phase has been made by Kulkarnil2) - this analysis 
covers additional points using a greatly simplified approach. 

The table below shows the performance of the bispectrum and weighted triple product relative 
to the averaging of phasors for various ranges of SNR on each "weak" baseline. 

N =2 N = 2 N = 3 N = 3 
SNR N - 1 WEIGHTED BISPECTRUM WEIGHTED BISPECTRUM 

0.5 14 23 26 10 15 
1 14 14 14 19 16 

1.5 11 8 5 9 2 
2.0 9 6 3 5 -2 
2.5 8 5 2 3 -3 
3.0 6 3 1 2 -3 
3.5 4 2 1 1 -2 
4.0 2 1 0 1 -2 

Table. Performance of optimal weighted triple product and bispectrum relative to phasor 
averaging. Performance values are in percent. SNR is the SNR for each weak 
baseline. N = number of weak baselines. 
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Figure 1. Closure phase noise vs segment length 




