To: Millimeter-wave VLBI Group
From:
Subject: $\quad 7 \mathrm{~mm}$ Feed

After discussion with Bill Fitzgerald, Xiaolei Zhang, and Peter Napier, we have chosen a feed based on a design by Xiaolei Zhang with a flare semi-angle equal to the half-angle subtended by the subreflector and aperture size to match the Australian wide-band design of Thomas, et al. The advantage of the wideband corrugated horns are that they require no lenses for phase correction and hence eliminate the concern that dielectric and scattering losses in the lens will increase the system temperature.

Design:

1] Copy the throat design of Xiaolei by scaling the dimensions of Figure 7 by $(100 / 43)=2.326$

2] Copy the horn design by scaling dimensions of Figure 12 (except horn length) by 2.326

3] Change the flare-semi-angle from 12° to 6.7° (this will give a taper of 17 dB at the edge of the subreflector)

4] Choose an aperture size to meet the criteria then $\Delta>\lambda / 2$ at the longest wavelength. Since Xiaolei's feed covers $70-115 \mathrm{GHz}$, our scaled version will cover $30-50 \mathrm{GHz}$. In order to make $\Delta=\lambda / 2$ at 30 GHz , the aperture diameter should be $6.75^{\prime \prime}$.

Performance:

Depending on receiver temperature, a 17 dB taper will provide close to optimum SEFD for Haystack. In Figure 1, I show the expected spillover and aperture efficiency (neglecting surface roughness or Ruze loss) for a 1 dB space frame loss and 1 dB radome panel reflection loss.

Beam Switcher:

The feed will be about $30^{\prime \prime}$ long with phase center about $20^{\prime \prime}$ down into the feed. If we mount the feed so that the front is about $5^{\prime \prime}$ from the wheel the focal point, which is $16^{\prime \prime}$ from the wheel central ray reflection point, will be $9^{\prime \prime}$ further back into the box then it should be to minimize the spherical aberration. However, this 9 " and even the $9+12=21$ "displacement for the offset beam focus will produce negligible loss provided the subreflector is refocused.

iquce 1.

$$
\text { Centu, 43 } 33 \rightarrow-5642
$$

Design of Conical Corrugated Feed Horns for Wide-Band High-Frequency Applications

fang: design of conical corrugated feed horns for wide-band h

Fig. 7. Throat design for wide-band single-mode and wide-band impedance matching.

Fig. 12. Design layout for the new conical horn.

II. Design Princtiples

The basic corrugated conical horn supporting the HE_{11} hybrid mode is illustrated in Fig. 1(a). For wide bandwidth performance this horn must radiate a near frequency-independent pattern. This is achieved by ensuring that the aperture radius a_{0} is sufficiently large that the aperture phase-error factor Δ is greater than one-half wavelength at the lowest
operating frequency [1]. When this criterion is met the intensity of the main beam at an angle corresponding to the flare angle θ_{0} is approximately 17 dB below the on-axis value and the phase center is located near the horn apex (point O in Fig. 1(a)). The radiation pattern is circularly symmetric and is

