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The estimation of parameters from data corrupted by Gaussian noise by weighted least squares 
yields the "most likely" or maximum likelihood estimate . This can be shown by using Bayes rule: 

m~ P[SilX]= m~x P[si]P(XISi)tp(X) 
I I 

where •th h . f Si = 1 c 01ce o parameter vector 
X = measurement vector = S+N 
N = noise vector 
S = true parameter vector 
P[] = probability 
p = probability density 

Since p(X) is not a function of i (using max to denote the index in multidimensional space which 
maximize s the quantity which follows) 

mfx P [S;IX]=mfxP[S; ]p,.(X -S;) 
= max P[S;] e-lx-s,12 for Gaussian noise 

I 

So that m~x P[SilX]= m!nlX -sl 
l I 

(see Detection; Estimation and Modulation Theory - part 1 Harry L. Van Trees, Wiley 1968) 

2] Linear weighted least squares 

If the measurements depend on the parameters in a linear manner 

X = AS +N 



where X = measurement vector 
S = parameter vector 
N = noise vector 
A = steering, design, sensitivity or observation coefficient matrix ( different names 

depending on field of study) 

In this case we can minimize the sum of weighted errors squared (this sum being known as chi-squared) 

X2 =ET We 

where c =X-AS 

to obtain the best estimate of S, denoted by S (and T designates the transpose of a matrix) 

The elements of the weight matrix are given by 

~=1/cr; i=J 

for uncorrelated colored noise with sigma cr; . 

It can be shown that 

where M = number of elements in measurement vector 
L = number of elements in parameter vector 

provided the data can be perfectly characterized by L parameters. 

3] Non-linear weighted least squares 

In the case of finding the most likely image from measurements of the correlated flux on each 
baseline and closure phase there is no nice linear transformation from image parameters to 
measurements. Some parameters, like the overall flux are linearly related but most are not and we have 
to resort to a brute force exhaustive search in order to minimize the sum of weighted errors squared. For 
example if we choose to model the image using 2 elliptical Gaussian components we have the following 
parameters: 

1] Total flux of both components 
2] Relative flux of 2nd component 
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3] Angular size of major axis of component 1 
4] Angular size of major axis of component 2 
5] Axial ratio of ellipse of component 1 
6] Axial ratio of ellipse of component 2 
7] Position angle of major axis of component 1 
8] Position angle of major axis of component 2 
9] Angular distance between components 
1 OJ Position angle of separation of components 

Since the measurements of correlated flux are only linear in the first parameter (closure phase 
being unaffected by this parameter) we need to perform a 9 dimensional exhaustive search to globally 
minimize the remaining 9 parameters. 

The flux ratio f can be found from 

where 

and 

4] 

model: 

mi= model visibility amplitude 
ai = observed visibility amplitude. 

Gaussian model 

An elliptical Gaussian image has an analytic visibility 

e-{(u2 +v2 )w1 (cos2 (e )+sin 2 (0 )! a 1
) /2 } 

where u,v are projected baseline components (rad/mas) 
w major axis (mas) (FWIDvf = 2 In (2) w) 
a axial ratio (major /minor) 
8 = P.A. of ellipse - P.A. of baseline. 

5] Computational efficiency 

In order to minimize the computational task it is advantageous to organize the nested loops of the 
multidimensional search so that the most complex calculations (especially those involving transcendental 
functions) by done in the outer loops. In addition the quantization (or grid size) needs to be as large as 
possible without significant chance of missing the global minimum of x, 2 . Following a global search , a 
fine search can be done on each parameter in an iterative manner. An efficiently coded program can 
compute x, 2 for 100 visibility amplitudes and an equal number of closure phase in about 200 
microseconds /model (bench marked on dopey Oct 96). 
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6] Ambiguities in the model 

Even if we find a global minimum in multidimensional X 2 space there is no guarantee that the 

model is unique. Other models may fit the data almost equally well. As a means of accessing the 

uniqueness of the best fit model we can determine the minimum of X 2 for other models at a given 

"distance" from the best fit model. An ideal distance metric might be the inverse of the normalized 
correlation between models. Unfortunately computing this metric is very time consuming and a simpler 
metric like 

is more practical. For this metric, the distance in each dimension is just the number of grid points away 
from the best fit model. A weight being assigned to each dimension in proportion to its importance. 

7] Errors in the parameters 

The +/- one sigma error in a given parameter is given by the range of that parameter for which 

A 2 _ 2_ 2 <1 
/..}.X - X Xrnin -

given a global search for a minimum X 2 over all other parameters. (An excellent discussion of this and 

other properties of X 2 is in Numerical Recipes by Press et al) 

In practice it is easier to vary one parameter a small amount o from the best fit, search for x ~in 

in the other parameters and assume that close to the best fit /j,X 2 varies quadratically with o 

If the observations are linear in the parameters the errors are given by the square root of the diagonal 
elements of the covariance matrix 

8] Adequacy of model 

If X 2 
/ degree of freedom is less than one the model may be too complex and simpler model 

may fit the data. On the other hand if X 2 
/ degree of freedom is greater than one the number of model 

parameters may have to be increased to adequately fit the observations. A useful test is to vary the 

number of model parameters and check the X 2 dependence. 

4 



-1.4 
+ra 

KS 

HK 

KT 

TO 

HT 

HO 

HTK 

HTO 

i~ 
-

0 
model mas 

--- ---~ 

: - - - -

~-1----t~ -

~---1-j 

. -
. 

'. I 

I • . 
I • • 

1.4 
-ra 

1700 

J'---___ 

. •.. . 
-

0 
uv megalambda 

_,,,,,..._ 

-

-

- 1700 

I 

_/ 

---------
! 

I 
I 
' 
i 
' I 

I 
I 

I 
' I 
' 

mode l fits 0-24 GHA hrs 

3C273B expt# 2673 dataspan : 96: 118:05:00 :00 to 96: 120:04:40:00 (mk:3/4 phase defn .) 

Component 1: 2.535 +/- 0.04 Jy 0.166 +/- 0.003 masFWHM(ma j .axis) 1.05 +/- 0.21 axial_ratio(maj/rnin) 83 +/- 4 P.A.(ma j.a xis) 

Component 2: 4.993 +/- 2 .26 Jy 0.538 +/- 0.080 masFWHM(maj.axis) 2.11 +/- 0.56 axial_ratio(maj /rnin) -85 +/- 9 P.A. (maj.axis) 

Component separation: 0.320 +/- 0 .07 mas -114 +/- 6 P.A.(Cl to C2) 788419 models considered 
~ ----- -- --- - -- -~ 

chi -squared/degree_of_freedom= 1.367 mode=l l 1..-I ===='E=='~;;;;..,.;;:;:;:;;~;:-=-=-=--=~=:;:~:;;:~/=~ -
chi-squareTu'rn oaei distance metnc (log scale) 

biases: H -0 .01 0-0.01 T 0.00 K -0.0 1 S -0.05 

CMVA Mon Nov 18 08:20:05 1996 model.data prg version: 1.2 



9] Sample results from model fitting program 

Figure 1 shows simulated data (for times at which there is real data) with SNR of IO in both the 
amplitudes and closure phases . Sites are 

K = Haystack 
S = Onsala 
H = hat creek 
T = kitt peak 
O = OVRO 

The 2 Gaussian component model fits the observations with reduced X, 2 close to unity. The model is 

fairly unique as determined by the increasing X, 
2 with model distance. Thus there is no other 

significantly different 2 component Gaussian model which fits the observations without substantial 
. • 2 
mcrease m X, . 

IO] Data weighting 

The data is weighted in proportion to the SNR2
• However a parameter allows the relative 

weighting of the closure phases and amplitudes to be changed . 
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