MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 HAYSTACK OBSERVATORY
 WESTFORD, MASSACHUSETTS 01886

June 13, 2005

To: SRT Group

From: Alan E.E. Rogers
Subject: Interferometer geometry calculations
For the "VLBI" mode we start with the latitude, longitude and height of each end of the "baseline" and convert to geocentric right handed x, y, z coordinates. This coordinate conversion is done by function

$$
\begin{aligned}
& x=(n+h g t) \cos (\text { lat }) \cos (\text { lon }) \\
& y=(n+\text { hgt }) \cos (\text { lat }) \sin (\text { lon }) \\
& z=(n+(1-e)+\text { hgt }) \sin (\text { lat })
\end{aligned}
$$

$$
\text { where } \begin{array}{rlr}
n & =a /\left(1-e \sin ^{2}(\text { lat })\right)^{1 / 2} \\
& \begin{aligned}
a & =6378137 \mathrm{~m} \quad \text { WGS84 } \\
\mathrm{e} & =2 \mathrm{f}-\mathrm{f}^{2} \\
\mathrm{f} & =1 / 298.257223563
\end{aligned} & \text { WGS84 }
\end{array}
$$

The vector baseline is defined as the vector from site1 (the "reference" site) to site2 (the remote site)

$$
\begin{aligned}
& b_{x}=x_{2}-x_{1} \\
& b_{y}=y_{2}-y_{1} \\
& b_{z}=z_{2}-z_{1}
\end{aligned}
$$

The delay τ of a signal's arrival at the remote site is $\tau=-\vec{b} \cdot \hat{s} / c=-\left(b_{x} s_{x}+b_{y} s_{y}+b_{z} s_{z}\right) / c$
Where c = velocity of propagation
$\hat{s}=$ unit vector in the direction of the source
$s_{x}=\cos$ (dec) \cos (gha)
$s_{y}=-\cos$ (dec) \sin (gha)
$s_{z}=\sin (\mathrm{dec})$
where $g h a=g s t-r a=$ Greenwich hour angle
gst $=$ Greenwich sidereal time
$r a=$ apparent right ascension
dec $=$ apparent declination
or from the derivatives of the phase with respect to $\mathrm{r} a$ and dec

$$
\phi=(2 \pi / \lambda)\left(\cos (\text { dec }) \cos (g h a) b_{x}-\cos (\text { dec }) \sin (g h a) b_{y}+\sin (\text { dec }) b_{z}\right)
$$

In units of fringes per arc second
$u=\left(b_{x} \sin (g h a)+b_{y} \cos (g h a)\right)(\pi / 648,000 \lambda)$
$v=\left(b_{z} \cos (d e c)-b_{x} \cos (g h a) \sin (d e c)+b_{y} \sin (g h a) \sin (d e c)(\pi / 648,000 \lambda)\right)$
The interferometer phase (normally defined as being positive (NRAO's convention) when the signal arrives earlier at the $2^{\text {nd }}$ site is
$\phi=+2 \pi \vec{b} \cdot \hat{s} / \lambda \quad$ (radians)
or $\phi=-2 \pi \tau f \quad$ (radians)
where $\lambda=$ wavelength (m)
$f=$ frequency (Hz)
The components of the baseline projected in the direction of the source in the directions of increasing RA and increasing declination are known as u and v and are often expressed in units of fringes per arc second. These can be derived from the baseline projections

$$
\begin{aligned}
& u=b_{x} \sin (g h a)+b_{y} \cos (g h a) \\
& v=b_{z} \cos (d e c)-b_{x} \cos (g h a) \sin (d e c)+b_{y} \sin (g h a) \sin (d e c)
\end{aligned}
$$

