UVLBI MEMO #018 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

April 8, 2010

Telephone: 781-981-5407 Fax: 781-981-0590

To: UVLBI Group From: Alan E.E. Rogers Subject: VLBI set-up and tests at SMT April 2010

Figure 1 shows the block diagram for the VLBI at SMT in April 2010. For this experiment the downconverter was modified to support dual polarization observations at 230 and 345 GHz. The block diagram of the downconverter, as modified for dual channels is shown in Figure 2. Figure 3 shows a photo of the converter with jumper cables connected to the 768 MHz (Nyquist zone 2) filters in each channel. The spare 1280 MHz filters are still in the box.

For this experiment the equipment was mounted in a rack as shown in the photograph of Figure 4.

A large number of tests of the system were performed as follows:

- 1. Comparison of the 10 MHz from the H-maser with an Oscilloquartz BVA Crystal.
- 2. The relative phase drift between the LCP and RCP channels at 230 GHz. These channels have separate harmonic mixers, Gunn oscillators and millimeter-wave multipliers locked to a common reference frequency near 10 GHz.
- 3. Phase noise measurements of the local oscillators for both the 230 and 345 GHz receivers.
- 4. Noise temperature and atmospheric opacity measurements at both 230 and 345 GHz.

H-maser vs Oscilloquartz

τ (sec)	Alan std. dev		
1	$2e^{-13}$		
10	$7e^{-14}$		
100	1e ⁻¹³		
Dev (Hz)	Phase noise (dBc/Hz@10 MHz)		
0.1	-100		
1	-118		
10	-125		

Phase_drift LCP vs RCP @230 GHz appeared to be mostly driven by ambient temperature with coefficient of ~ 12 deg_phase/degC

L.O. loss du	e to phase noise	> 1Hz (from spectral plots)		
Freq (C	GHz)	Loss (percent)		
230)	~1		
345	5	~3		
Long term t	ime drift of L.O.	(from zero-beat drift chart)		
Freq (C	GHz)	Гур. Phase drift (deg/min)		
230)	70		
345		360		
Noise temperatures (Tsys above atmosphere @Zenith)				
Freq (GHz)	Trec(K)	Tsys(K)	Sideband τ_{atmos}	
230	~65	~250	$SSB \sim 0.1$	
345	~150	~600	$DSB \sim 0.3$	
345	~300	~1200	$SSB \sim 0.3$	

Figure 5 shows the rate of the maser relative to GPS.

Typical Y-factor on Saturn was 1.05 which corresponds to 12.5 K out of a 250K system temperature. If Saturn's brightness is 100K at 1.3 mm then the estimated antenna temperature is about 14K for 50% aperture efficiency.

The session was run by A. Rogers, V. Fish and R. Freund.

- 7) 6 cycles phase drift per hour between test tone & LO
- 8) For 0.8mm 345353 MHz on sky \rightarrow 1024 MHz numbers in () for 0.8 mm

Figure 1.

Figure 2. Block diagram on modified downconverter

Figure 3. Down converter modified for dual channel

Figure 4. VLBI rack

Figure 5. Shows the rate of the maser relative to GPS.