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Overview: When setting the phase calibration power level for the broadband 
development receiver, trade-offs must be made between average phase cal power levels, 
the number of rails in a given channel, the time interval used to extract phase estimates, 
and the precision of the extracted phase estimates. In this memo formalisms are 
developed to define the relationships between these quantities in order that one may 
quantify the phase calibration amplitude given the rail spacing, processing time, phase cal 
power level, and required phase estimation precision. 
 
Background and Assumptions: 

I only consider signals in each individual DBE channel (i.e. 32 MHz channel) and 
not the entire downconversion process in the interest of simplicity1. Furthermore, I 
assume phase cal extraction is performed in through analog signal processing so I do not 
consider affects such as two-bit sampling and aliasing. Lastly, I assume that the average 
power of phase cal within the channel bandwidth is equally distributed among the rails. 
 
1. Phase Calibration Amplitude-Phase Extraction Processing 
 

The phase calibration phases are estimated, basically, by evaluating the Fourier 
transform of the scan data at the frequency of the phase cal rail undergoing extraction, 
though there are some subtleties involving normalization of the integrals. Formally put, 

the amplitude and phase estimates, 
∧

a  and 
∧

φ  respectively are defined as2:  
  

(1a) 
 
 
 

                                                 
1 The reader should be aware that the downconversion LO and phase cal rail spacing determine exactly how 
many rails will appear in any given DBE channel since the simplicity of the analysis presented here does 
not directly address the dependence of these parameters. 
2 The formulae displayed here were derived from the code bpcal.c  
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(1b) 

 
                                             
 
 

(1c) 
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(1e) 
 

 
 
 

(1f) 
 
 
 
 

(1g) 
 

 
where s(t) represents the data detected in the channel bandwidth, fo is the baseband 
frequency at which the phase and amplitude estimates are being extracted, Tpce is the time 
duration used to extract the estimates, and tan-12 is the 4-quadrant inverse tangent 
function.  

Simplifications can be applied to (1) using the following relations: 
 
 

(2a) 
 
 
 

(2b) 
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where, 
∧

ra is an estimate of the peak-voltage amplitude of the phase cal rail at fo as 
determined by the complex Fourier transform of s(t). The condition ‘2πfoTpce >> 1’ in 
(2a) is valid for the typical phase cal extraction scenario (e.g. fo = 16 MHz, Tpce = 10s). In 
(2b) and (2c), I recognize the real and imaginary parts of the Fourier transform of s(t) at fo 
are related through the phase estimate of the phase cal rail.   
 Substituting the relations made in (2) into the formulae in (1) and simplifying 
terms, the amplitude and phase estimates of the phase cal tone at fo are given by: 
  

 
(3a) 

 
 

 
(3b) 

 
 

In observing (3a), one can see that the phase estimate of the phase cal tone is nothing 
more than the phase of the Fourier sample of s(t) at fo. In observing (3b), the amplitude of 
a phase cal tone is a normalized value (correlation coefficient?) representing the rail’s 
energy relative to the total energy ‘E’ contained in the signal s(t)3.   

Equation (1g) defines the total energy contained in the receiver signal and in order 
to complete the processing formalism, ‘E’ must be related to the average phase cal power 
and the receiver noise. The total signal, s(t), is a sum of the phase cal signal and the 
receiver noise signal: 

 
(4) 

 
 

 
where, srn(t) is the receiver noise defined as a Gaussian white noise voltage signal having 
an rms voltage σr, Nr is the number of rails in the channel bandwidth, fLO is the LO 
frequency which relates the rail’s equivalent sky frequency to it’s corresponding 
baseband frequency, k is the tone number, ar is the voltage amplitude of the rail at the 
specified frequency, and t is time within the phase cal processing interval. It should also 
be noted that fo coincides with one of the rail frequencies such that for a given tone 
number k,  fo = fLO +k∆f 

Since the phase cal tones are uncorrelated with one another and are also 
uncorrelated with the receiver noise, we need only consider the sum of the squares of 
each term in (11) when calculating the total signal energy. That is: 
 

   
(5) 

 
 

                                                 
3 In bpcal.c, the phase cal amplitude as defined in (3b), is actually scaled by a factor of 1000 
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Further simplification can be made by recognizing that the average power contained in 
the phase calibration signal is given by one-half the sum of the squares of each tone’s 
peak-amplitude: 
 

 
(6) 

 
 
Equation (5) relates the total energy contained in s(t) in terms of the average receiver 
noise and phase cal power. With this relation a more specific expression for the phase cal 
amplitude can be developed by substituting (5) and (6) into (3b): 

 
 

(7) 
 

 
 
Single Rail Power SNR: 
 
The receiver’s noise power is given by4: 
 

(8) 
 
where Tr is the receiver’s noise temperature and Bc is the bandwidth of the DBE channel 
filter (32 MHz). The time-average phase cal power injected into the front-end of the 
receiver is:  

(9) 
 

where η is the parameter dictating the strength of the time-average phase cal power (all 
rails in the 32 MHz channel) relative to the receiver noise.  
 
Assuming the phase cal power is equally distributed across all rails contained in Bc, the 
time-average power contained in a single rail is:  

 
(10) 

 
The phase cal extraction zooms in on the spectral region where the phase cal rail exists 
and the reduces the observable bandwidth of the signal centered at fo to Bpce as dictated by 
the time duration used to extract the rail’s phase:  
 

 
 (11) 

 
The noise power available after phase cal extraction is:  
                                                 
4 Receiver gain factors have been suppressed as the following analysis only considers the relative 
difference in power between the phase cal tones and the receiver noise; gain factors are common to both.  
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(12) 

 
 

The power signal-to-noise ratio of a single phase cal rail after extraction is: 
 
  

(13) 
 
 

 
Precision of Phase Estimates: 

 
The presence of receiver noise in s(n) limits the precision of phase estimates. The 

strength of the phase cal rail relative to the available noise in the estimate is defined by 
(13). Assuming the SNR >> 1 (so we have Gaussian statistics), the uncertainty in the 
phase estimate based on the SNR is given simply by the following: 

 
(14) 

 
 

In practice, if we require the 95% confidence interval (2σφ) of the phase estimates to be 
1o

 or less, this necessitates that the single rail SNR be greater than 13053 or 41.2 dB. 
 
Specification of Phase Calibration Amplitude for Desired Phase Precision 

The phase cal amplitude can be expressed solely in terms of η, and Nr. In order 
demonstrate this relationship the peak-voltage amplitude of the rail must be related to it’s 
time-average power: 

 
(15) 

 
 
Then substituting equations (9), (10) and (15) into (7)5, combining terms, and canceling 
factors common to the numerator and denominator, reveals the dependence of the phase 
cal amplitude on the parameter η - the ratio of the time-average phase cal power in the 
channel relative to the noise power in the same channel): 

  
 

(16) 
 

                                                 
5 Since the actual rail voltage amplitude ar expressed in (15) and the estimated rail voltage 

∧

ra in (7) are not 
technically the same quantity, in general, this substitution is void because we do not have apriori 
knowledge of ar. However, in the case when SNR >> 1 (i.e. when a high degree of phase precision is 
required) the actual quantity and the estimated quantity converge and the substitution is justified.  
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Given the relationship of the SNR on the experiment parameters to, η, Tpce, Bc, and Nr 

(equation (13)), and the relation of the SNR to the phase cal phase precision, σφ (equation 
(14)), the following describes the dependence of the phase estimate precision on the 
experiment parameters 

 
(17) 

 
 

Finally, equations (16) and (17) can be used to relate the required phase cal amplitude, a, 
to the desired phase estimate precision, φσ, through the experiment parameters, Tpce, Bc, 
and Nr as follows: 

 
(18) 

 
 

There are various pragmatic considerations that must be examined when choosing 
η, Nr and Tpce

6, however, these trade-offs will not be examined here. Once the desired η, 
Nr have been determined, these quantities can be substituted into (19) which will yield 
the required phase cal amplitude given the original phase precision requirement. 

 
Comparison of Measured and Calculated Phase Calibration Amplitude 
 To test the validity of the equation (16), a simple experiment was conducted with 
a microwave noise generator, phase calibration signal generator, updown converter (Luff 
= 7645.1 MHz, Nyquist zone 2 output), and digital backend (DBE1); the experimental 
setup is shown in Figure 1. The 7th polyphase frequency channel spanning 781.4 to 813.4 
MHz IF was arbitrarily chosen for this experiment. In this experiment, the phase cal 
power level was set to approximately 0.1% (it is purely coincidental that the attenuator in 
figure 1 is 29 dB) of the noise power in the 32 MHz channel. Given the UDC Luff 
frequency, the 8880 MHz phase cal tone is translated to an IF of 799.6 MHz and 
baseband frequency of -16.4 MHz; this tone was also arbitrarily targeted for the 
experiment. 
 A spectrum analyzer was used to measure the total analog IF power in the 
aforementioned polyphase filter channel as well as the power contained in the 799.6 MHz 
phase cal tone. The total IF power in the 32 MHz channel as measured at the IF2 monitor 
output (derived from DBE1 input with 15dB coupler) of the DBE1 was σr

2= 100 µW (-40 
dBm) while the power measured in the 799.6 MHz tone was pcrP  = 70.795 nW (-71.5 
dBm). Using the Mark5B+ recorder, a test scan of the superposed noise and phase 
calibration signals was made, 20ms of which was subsequently processed using bpcal. 
The phase cal amplitude as reported by bpcal was 25 (amplitude is unitless per (18) ).  

                                                 
6 As an example of a practical consideration, it is desirable to minimize η in order to reduce noise 
introduced into station-to-station cross-correlations by the phase cal signal. In contrast, η must be large 
enough to be detected with the specified SNR within the detection period. Also, the power in the rail must  
overcome the power in a supposed spurious signal occupying the same frequency as the rail under 
extraction. 
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In the case when η << 1, equation (16) collapses to the following form using (9) and 
(10): 

 
(19) 

 
 

Given the measured σr
2 and pcrP , the calculated phase cal amplitude is 27ˆ =a , which is 

in reasonable agreement with measured value of 25. 
 

Observations 
For the relatively small phase cal power levels (i.e. η <<1 ) that are encountered 

in practice, the result presented in the previous section indicates that the continuous phase 
cal amplitude analysis presented here is sufficient for the cases expected to be 
encountered at healthy VLBI stations. As mentioned in the background section, the 
analysis conducted here was done so assuming continuous mathematics and I expect that 
the 2-bit quantization of the data as recorded by the Mark5B+ will impart some deviation 
from the continuous case when η <<1 is no longer valid. Since the analytically analyzing 
phase cal extraction of 2-bit quantized samples becomes unwieldy, such analysis is 
probably best left to numerical simulation (i.e. Monte Carlo analysis). 
 
 

Figure 1: Test setup used to compare measured and calculated phase calibration amplitudes 
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