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Holographic Processing 
 

Consider the antenna aperture shown in figure 1, radiating (or receiving by 
reciprocity) at frequency f, and having a singularly (x) polarized electric field distribution 
given by ( )aptaptx yxE , ; the unknown aperture distribution. Given samples of the far-field 

receive pattern of ( )aptaptx yxE , , the aperture distribution function can be reconstructed by 
the following formulation: 

 
(1a) 

 
 

(1b) 
 

(1c) 
 

Where θ, φ are as depicted in figure 1 and define the location of the far-field source 
relative to the aperture. The integration of equation 1a is performed over the range of 
θ and φ for which there is knowledge of the far-field radiation pattern ff

xE . Equation 1a 
relates the aperture distribution function to the two-dimensional Fourier transform of the 
far-field pattern; normalization constants have been suppressed. Equations 1b and 1c are 
formatting equations which indicate where the far-field samples must be located in 
Fourier space in order to successfully reconstruct the aperture distribution using the 
Fourier-based method. A benefit of incorporating this method is that one can employ 
properties of the multi-dimensional Fourier transform when analyzing imagery generated 
from such holographic processing. 
 Data collected for holographic processing are done so by scanning the antenna 
under test (AUT) through a source at some azimuth and elevation angle in the antenna 
coordinate system which is fixed relative to the physical ground plane. The angles θ and 
φ, on the other hand, are defined in the aperture coordinate system and change as a 
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function of antenna pointing. As such, the source pointing vector defined by θ and φ must 
be related to the antenna azimuth and elevation pointing angles in order to give them 
meaning for the application at hand. Figure 2 displays this relationship which is defined 
by the following transformation: 
 

 
 (2) 

 
 

 
Here, Pant is the antenna pointing unit vector in the antenna coordinate system and ψs and 
φs are the elevation and azimuth pointing angles, respectively, to the source being used to 
measure the far-field pattern. Based on figure 2 and equation 2, one will observe that at 
ψs = φs = 0°, the xant axis coincides with the zapt axis (source pointing vector) of the 
aperture system. In figure 3, the source pointing vector (green vector in figure 2) 
coincides with zapt. 
 The significance of the transformation described by equation 2 is that it describes 
how say a uniform azimuth and elevation sampling grid in the antenna system is 
deformed into a nonuniform sample grid in the Fourier space. As an example, assume 
that a holographic data collection is performed whereby a sampling grid is constructed 
using 5° steps spanning 40° in azimuth and elevation and the source is located at 45° 
elevation and 0° azimuth. Figure 3 displays the Fx,Fy spatial frequency mapping of the 
samples given the specified antenna raster scan. 
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Figure 1: Geometry depicting the antenna aperture in the aperture coordinate  
      System. 
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Figure 2: Relationship of antenna (grey) and aperture (red) coordinate systems 
through the source azimuth (φp) and elevation (ψp) angles when the  
antenna is pointed on-source. 
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Figure 3: Example mapping of nonuniformly distributed Fourier space samples obtained 
from uniform sampling in antenna azimuth and elevation. 
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In order to reconstruct a hologram given a sample mapping such as that shown in 

Figure 3, two methods may be incorporated. The first method, which is technically 
straightforward yet computationally intensive, explicitly evaluates equation 1. This 
amounts to calculating a discrete Fourier transform which requires that a 2D complex 
weighting and summing of ff

xE  be performed for each pixel evaluated in the hologram. A 
more efficient and widely used approach is to resample the nonuniform Fourier space 
grid to one that is uniform and then employ a 2D FFT routine. In the interest of 
development time, the first method has been implemented in MATLAB code. If 
processor speed become an issue using this method, a sinc interpolant can be developed 
to speed up the calculations by implementing the second method. 

Resolution of a holographic image reconstruction is an important parameter to 
consider when diagnosing the performance of an antenna. Since the Fourier spatial 
frequency counterparts to xapt and yapt are Fx and Fy, respectively, the xapt,yapt holographic 
image resolutions, δx and δy, respectively, are inversely proportional to the spatial 
frequency span of the data in each dimensions. Formally expressed: 

 
 (3a) 

 
 

(3b) 
 

where ΔFx and ΔFy are the span of the data in the Fx and Fy dimensions, respectively. In 
regards to a spatial frequency mapping, ΔFx and ΔFy are taken as shown in figure 3.
 Conversely to image resolution, the unambiguous size of the hologram that can be 
reconstructed is dependant on the spacing of the samples in the Fourier space which is 
also depicted in figure 3. The largest spacing of the samples in the Fx and Fy dimensions 
is used to determine the unambiguous image size in the xapt and yapt dimensions: 

 
(4a) 

 
 

(4b) 
 

Here Δx and Δy are the unambiguous size of the image in the xapt and yapt dimensions and 
δFx and δFy are the maximum Fx and Fy sample spacings, respectively.  
 Lastly, the image phase of a holographic reconstruction can be used to infer 
information about height relative to the aperture plane. This is done using the following 
relation: 

 
(5) 

 
where Φp is the phase of any given pixel in the image and zp is the inferred height of that 
particular pixel out of the aperture plane. This technique is only applicable to those pixels 
which have appreciable amplitude in the hologram. 
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Processor Performance with Simulated Data 
 
 As a demonstration of the processor’s performance, a simulated holographic data 
set was created by modeling the far-field pattern of a 5 meter circular aperture possessing 
a 2m circular distortion: 

 
(6) 

 
 
where θ and φ are as defined in figure 1 and J1 is the first-order Bessel function of the 
first kind. In the model described by equation 6, the distortion is offset from the center of 
the aperture by 1 meter in xapt and yapt, possesses one half the field amplitude of the rest 
of the aperture, and is displaced 10 mm out of the aperture plane. The data were 
calculated over elevation and azimuth spans of 10 and 13.25°, respectively, with the 
source located at 45° elevation angle and 0° azimuth angle. For this particular collection, 
δx = δy = 0.14 m. Figure 4 displays the magnitude and height profile of the aperture 
distribution as reconstructed by holographic processing of the simulated far-field data. In 
observing figure 4, one will observe that the circular shape and relative intensities of the 
aperture and the distorted area are preserved in the reconstruction. Furthermore, the 
processor faithfully reproduces the height profile of the radiating aperture relative to the 
xapt,yapt plane.   
 
Considerations in Measuring Far-Field Data 
 

Up to this point, the assumption was made that samples of the test antenna’s far-
field pattern were available. Also, the development of the holographic processor in the 
previous section was done so for a single frequency signal. That being said, the phase and 
magnitude of the far-field samples are obtained by cross-correlating the signal received 
by the reference antenna (fixed pointing on the source) and that by the AUT (scanned 
through the source). In accordance with the development of the previous section, the far-
field measurement is then the magnitude and phase of the cross-power spectrum (CPS) at 
a single frequency. Though consistent with the processor development, using only one 
frequency from the CPS is unsatisfactory because the majority of the data is discarded 
and SNR is lost. However, if the reciprocal bandwidth of the signals used to generate the 
cross-correlation function (CCF) is sufficiently large with respect to time delay variations 
across the aperture (due to antenna imperfections), there will be little phase variation 
across the CPS and the magnitude/phase of the CCF at it’s peak(magnitude) is 
representative of the complex far-field sample at each point in the raster scan. In practice, 
the bandwidth of the CCF will probably be 32 MHz, for which the time-delay resolution 
is 31 ns. The time delay errors across the antenna aperture would have to be extremely 
gross in order to loose coherence across such a narrow bandwidth. This being the case, it 
is permissible to use the peaks of the CCFs to provide the complex far-field samples used 
to reconstruct the hologram. 
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Figure 4: Holographic reconstruction of data simulating 5m circular aperture with 1m circular 
distortion. (a) display the magnitude of the electric field in the aperture and (b) 
displays the height profile of the aperture. 
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SNR Considerations 
 

It is also worthwhile to evaluate the amount of recording time needed for each 
scan to achieve a specified maximum rms phase uncertainty (at minimum AUT area 
when pointed off-source) and hence minimal SNR in the far-field data. Based on rough 
power measurements of a randomly selected satellite source using one of AEER’s 
VSRTs, the noise power in the source was observed to be 10 dB stronger than that of the 
LNB. This particular VSRT possessed an LNB with noise temperature of 100K and an 
18” aperture with 50% efficiency. Based on the observed power level of the source 
relative to the LNB noise and the aperture area, in 32 MHz bandwidth the power density 
available in Haystack parking lot is approximately -82 dBm/m2.  

Based on this power density, assuming a reference antenna possessing 1m 
aperture with 50% efficiency using a front-end having temperature 100K, the SNR in the 
reference measurements will be 13.5 dB. Assuming MV3 as the test antenna, that it is 
operating at 40% efficiency, and that it is pointed +/- 5 deg off-source, the effective area 
of the antenna when pointed fully off-source, assuming an Airy pattern, is 0.1 m2. Given 
that the MV3 antenna temperature is currently 100K and the off-source effective area, the 
minimum SNR in the AUT observations is expected to be 11.5 dB. Given the single dish 
SNR in each antenna and assuming 2-bit sampling, the correlation amplitude, ρo, is 
calculated with the following: 

 
(4) 

 
 
where snrr and snrt are the single dish signal-to-noise ratio’s of the reference and test 
antennas, respectively. The factor 1/1.13 is the loss as a result of 2-bit sampling. Given 
the previously calculated single dish SNR quantities, ρo = 0.83. 

Having the correlation amplitude, the total recording time needed to achieve a 
specified phase uncertainty, σφ, in the far-field data is given by: 

  
 (5) 

 
 

where fs is the data sample rate. With 32 MHz channels, the data sample rate is 64 MS/s 
and taking σφ = 1 deg, the recording time needed to achieve the required SNR is 73 us. 
This record time corresponds to a total sample count of 4672 which is sufficiently small 
enough to allow the reference/test antenna correlations to be performed on the same 
computer running the holographic processor. 
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