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Subject: Setting correlator clocks for VGOS CONT17 processing 

1. Introduction 
 
In June 2018 the VGOS CONT17 data were reprocessed at Haystack using a method of accounting for 
station delays that differs from the one used in the original January 2018 processing and in other VGOS 
processing to date.  This memo describes the rationale behind adopting a new method and behind 
selecting the specific method used in June from among several options.  This method can be used when 
processing VGOS data in any DiFX/HOPS-based geodetic VLBI correlator such as those at Haystack, 
Bonn, and WACO. 
 
2. Clock models in general 
 
The clock models specified in the $CLOCK section of a VEX file have two functions in correlation: 

(a) Adjust the baseline a priori delay for the clock delays at the two stations in order to bring the 
residual singleband delay (SBD) close to zero (typically <100 ns). 

(b) Correct the time tag1 associated with each data sample at a station for any error in the time tag 
applied at record time (i.e., in the VDIF epoch of the sample). 

The latter correction is important when VLBI data are used to determine UT1-TAI (hereafter simply 
UT1), as a time-tag shift translates into a UT1 shift of the same magnitude and opposite sign [1].  See 
Appendix 1 for details on how $CLOCK models affect observed delays. 
 
The clock delay can be viewed crudely as made up of two parts: 

1) the offset between UTC and the VDIF epoch assigned to the data samples (referred to in this 
memo as VDIF-UTC offset), and 

2) the time difference between when a wavefront crosses the antenna intersection of axes and when 
its digitized sample is time-tagged in the backend (station instrumental delay, or simply station 
delay). 

Up to now, standard VGOS practice has been to put only part 1 in the $CLOCK section, with part 2 
accounted for primarily by sampler_delay_x/y adjustments applied post-correlation by fourfit.  These 
sampler delays are effectively added to the a priori delay in fourfit and so accomplish the first function 
above, but unlike $CLOCK they do not affect the time tagging.  (See Appendix 2 for confirmatory 
evidence.)  In the original processing of the VGOS CONT17 sessions, the sampler delay differences 
between some station pairs were as large as 1.4 μs.  UT1 estimated from different baselines would 
therefore be inconsistent by up to 1.4 μs. 

                                                           
1 In this memo the term “time tag” refers either to the epoch associated with each data sample or to the mean epochs 
of the time-averaged correlated data (typically 1-second averages) passed through difx2mark4 to fourfit.  It does not 
refer to the database parameter TIMETAG, which in HOPS is called the Fourfit Reference Time. 
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3. Clock models in S/X geodetic VLBI 
 
The method used to create S/X clock models is an instructive starting point for VGOS. 
 
In standard S/X correlation practice, all clock information goes into $CLOCK; fourfit sampler delays are 
not used. 
 
The initial estimates for the clock model offset and rate for a station are obtained by fitting a straight line 
to the dot2gps or fmout-gps time series in the Field System log.  The sign conventions for dot2gps, 
fmout-gps, and $CLOCK models are the same: a positive value means that dot, fmout, or the data sample 
time tag leads gps or UTC. 
 
If these preliminary clock models are used to correlate a session, residual SBDs will typically be between 
a few hundred ns and a few μs, depending on baseline.  These large biases reflect mainly the missing 
“part 2” instrumental delays of section 2.  On a given baseline the rms scan-to-scan scatter in X-band 
residual SBD for high-SNR scans or in the more precise X-band residual multiband delay (MBD) for all 
scans is generally <10 ns.  This fact indicates that, aside from the clock model, the a priori model based 
on station and source positions, EOP, and a tropospheric delay model is good to <10 ns.  (The scatter can 
be larger at S-band due to unmodeled ionospheric delay contributions.)  By adjusting the preliminary 
dot2gps-based clock model for each station by a station-specific amount, the  X-band residual SBD on 
each baseline can be brought much closer to zero, typically within <10 ns.2  This adjustment is called the 
peculiar offset. The resulting clock models should be accurate at X-band to <10 ns, aside from an overall 
additive constant – a universal clock adjustment (UCA), if you will – that can be applied to all models 
without affecting the baseline a priori delay.   
 
With clock models consistent to a few tens of ns, UT1 estimated from different baselines should be 
consistent at the same level.  If the UCA applied to all models is changed, however, UT1 will change by 
that amount.  In order to avoid jumps in UT1 time series caused by such a change, IVS correlators use a 
standard set of peculiar offsets that ultimately can be traced back to setting the peculiar offset for 
KOKEE20M to zero in the 1990s.  The KOKEE20M instrumental delay was of course not truly zero, so 
the S/X UT1 time series is biased compared with an “absolute” time series wherein UT1 is the Earth 
rotation angle determined by a fictitious zenith-pointing telescope. 
 
4. Goals 
 
The main aim in revising the VGOS processing procedure  is to move as much of the station delay as 
possible into $CLOCK so that the data time tags, and hence correlated data time tags and UT1 estimates, 
are consistent among stations and baselines within a session.  Maintaining consistency from session to 
session is also important, but we do not address that topic here. 
 
The level of consistency should be small compared with the formal UT1 error in a daily geodetic session.  
For the CONT17 VGOS series, the formal error was ~800 ns.  We therefore set as a goal that data time-
tagging be consistent among all stations to <100 ns. 
 
There is also the question of the value of the UCA to be applied to all peculiar offsets, i.e., how do we 
want to bias the VGOS UT1 time series.  There are at least three options: 
                                                           
2 Residual SBD can differ between S- and X-band for a given station by as much as ~100 ns due to differences in 
instrumental delays.  Because X-band data are much more heavily weighted than S-band when constructing the 
ionosphere-free delay, standard practice is to adjust the clock model to minimize the X-band residual SBD bias. 
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(a) Set the peculiar offset arbitrarily (to zero, say) for one site.  The offsets for the other sites will 
follow by requiring residual SBD = 0.  This is the S/X example. 

(b) Set the UCA so that the VGOS UT1 time series is unbiased relative to the S/X. 
(c) Set the UCA to give an “absolutely” correct time series. 

Option (a) is the easiest.  Geodetic sessions already observed (e.g., the KT series with KOKEE20M and 
KOKEE12M or mixed-mode R1 sessions) may provide the information needed to enable option (b), but 
they have not yet been analyzed toward that end.  Option (c) requires careful measurements of 
instrumental delays at a VGOS site (and preferably at multiple sites to check consistency); such 
measurements have not yet been carried out to our knowledge.  Note that, because a change in UCA shifts 
UT1 by the same amount, a future decision to change from one of the above options to another can be 
applied retroactively to existing UT1 time series simply by applying an additive constant.  
 
5. Options for setting VGOS clocks 
 
Putting aside temporarily the question of what value to assign to the UCA, we list three options for how 
the $CLOCK models and fourfit sampler delays could be set so as to incorporate most, if not all, the 
station delay into $CLOCK.  We assume the present incarnations of DiFX and HOPS, without any code 
modification or augmentation.  In this section we consider only stations with instrumental delays that vary 
from band to band by <~100 ns.  We defer to the next section treating the one form of large band delay 
differences encountered on a regular basis to date, viz., large differences between bands A and B-D. 

(a) Leave the fourfit samplers command undefined so that the SBD is not adjusted by the ‘PC 
delays’3 listed on a fourfit plot.  Set the peculiar offset for one station to zero, then set the 
peculiar offsets for the others by requiring residual SBD = 0.  This method is akin to the S/X 
and gives peculiar offsets closest to their true values, to within limits imposed by the band-to-
band delay variation for each station.  Because samplers is undefined, cross-spectral phases 
will not be corrected for instrumental phase variations over frequency or time, and multitone 
phases will be used only to calculate the mid-channel phase cal phases to be applied for MBD 
estimation.  A drawback is that dispensing with the cross-spectral phase corrections will 
decrease SNR and precision.  Far more serious is the fact that, by not correcting the SBD 
within each band for the mean PC (i.e., instrumental) delay at each station, the residual SBD 
will vary from band to band by tens of ns or more at some sites (and by ~325 ns between 
bands A and B-D at GGAO12M).  When the peak-to-peak SBD variation across bands is not 
small compared with the inverse channel bandwidth (currently 1/32 μs), significant coherence 
loss will occur when fringe-fitting across all bands, as is standard for VGOS. 

(b) Same as (a) except that, after determining the peculiar offsets, define samplers and set 
sampler_delay for each band/polarization to the median4 observed PC delay in the default 
range between -100 and +100 ns.  Residual SBDs on a given baseline will now be consistent 
across bands, and SNR will be improved over (a).  Residual SBDs will however be nonzero 
by as much as 200 ns due to their now being affected by the PC delays, and they will differ 
from baseline to baseline.  This fact will greatly complicate monitoring changes in the clock 

                                                           
3 ‘PC delay’ represents the difference in signal delay between the paths (a) from maser to phase cal generator in the 
receiver to sampler and (b) from maser to sampler clock circuit. The PC delay shown on a fourfit fringe plot for each 
channel is the phase cal delay calculated from the unmasked phase cal tones in the channel, subject to the 
requirement that its value lies within a 200-ns-wide range whose midpoint is specified by the sampler_delay_x/y 
parameter for the band and polarization of the channel.   If sampler_delay is not specified, PC delay defaults to the 
value between -100 and +100 ns.  Iff the fourfit samplers command is defined (by which is meant that one or more 
sets of channels are defined that share a common physical sampler and so should have similar delays), the mean PC 
delay over the sampler pool is used to correct the SBD. 
4 Or mean delay – the precise value is not critical since sampler_delay defines only the range within which PC delay 
is to lie, not its actual value. 
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delays from session to session, as one cannot rely on a nonzero residual SBD as indicating a 
clock change as in the current method. 

(c) Same as (b) but define samplers and sampler_delay values from the start.  Residual SBDs 
will be near zero across all bands and baselines, but the clock models will be in error by the 
amount of the PC delay, i.e., by up to 100 ns (half a phase cal ambiguity). 

 
A fourth option differs from (c) only in the UCA value: 

(d) The January 2018 CONT17 correlation was set up in a manner similar to (c) except that the 
sampler_delay values included multiple 200-ns ambiguities that brought them as close as 
possible to the values for the receiver-to-backend station delays5 estimated by Arthur Niell.  
Consequently the peculiar offsets were small (<100 ns).  Achieving the goal stated at the 
beginning of section 4 entails simply, for each site, moving the integer phase cal ambiguities 
in the January 2018 sampler delays that are common across bands and polarizations out of the 
sampler delays (so that the new sampler delays are in the range ±100 ns) and into the clock 
model.  For example, if the old sampler delay is 1180 ns, subtract 1200 ns so that its new 
value is -20 ns, and add 1200 ns to the clock offset.  The residual SBDs should be the same as 
before the change, with absolute values <10 ns typically.  As in (c), the clocks will be wrong 
by up to 100 ns. 

 
Option (d) was chosen for the June 2018 CONT17 reprocessing because it lacks the drawbacks of (a) and 
(b) and because it comes as close to providing absolute UT1 as we can at present, unlike (c).  To the 
extent the January station delay estimates are accurate (and ignoring the relatively small difference 
between epochs of wavefront reception in the feed and of wavefront passage by the intersection of axes), 
UT1 estimates based on data processed with option (d) should be absolute to <100 ns. 
 
When the new method was first tested, an unanticipated bonus (subsequently explained by Roger 
Cappallo) was an SNR increase by up to ~40%, with the increase roughly proportional to the absolute 
magnitude of the change in reference-remote sampler delay difference. 
 
6. Dealing with the band A delay offset 
 
At GGAO12M and KOKEE12M, the instrumental delay in band A differs from that in bands B-D by 
~300 ns due to using coax for the band A downlink and fiber for B-D.  As described in Appendix 3, time-
tag errors induced by the difference in band delays can be kept under ~30 ns (or equivalently the 
corresponding MBD errors can be kept under 30 ns times delay rate) by setting the peculiar offset as close 
as possible to midway between the band A and band B-D delays. 
 
7. Detailed procedure 
 
Here we describe in detail how the $CLOCK model and fourfit control file used in the January 2018 
CONT17 processing were modified for each station in the June reprocessing, in accordance with the 
recommended option (d) of section 5 and with  section 6.  The intial fourfit sampler_delay values are 
those determined by Arthur Niell and used in the January 2018 processing.  In all cases, sampler_delay 
was identical for X and Y polarizations. 
 

1) Let SDA be the sampler_delay value for band A, and SDBCD be the mean of the sampler_delay 
values for bands B-D. 

                                                           
5 Because sampler (or PC) delay and station delay refer to different, albeit overlapping, signal paths, in general the 
sampler delay cannot be made to match the station delay by adding 200-ns ambiguities.  For the optimum number of 
ambiguities, the two delays will differ by up to 100 ns.   
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2) Set SDall = ( SDA + SDBCD ) / 2. 
3) Set SDmod = SDall modulo 200 ns, with -100 ns ≤ SDmod ≤ 100 ns.  SDmod is the sampler_delay 

with phase cal ambiguities removed. 
4) Set SDamb = SDall ‒ SDmod.  SDamb will be an integer multiple of 200 ns. 
5) Add SDamb to the $CLOCK offset. 
6) Subtract SDamb from all 8 sampler_delay values (4 bands and 2 pols) in the fourfit control file. 

 
When this procedure was applied to the six stations in CONT17, the new SDall values ranged from -62 ns 
to 20 ns.  These values also correspond to the relative $CLOCK offset errors between stations, and they 
meet the target of consistent time-tagging among stations to <100 ns. 
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Appendix 1.  Effect of changing $CLOCK model on fourfit delay 
 
 
The a priori delay on a baseline can be viewed as the sum of two components: the “geometric” delay 
from CALC (which includes tropospheric delay) and the clock delay difference between the stations.  Let 
A and B be the labels for the reference and remote stations.  If the $CLOCK offsets for the two stations 
are changed by δA and δB, the a priori baseline clock delay changes by δB ‒ δA (this is effect (a) in section 
2 of the memo).  In contrast, the time-tag shift that accompanies a change in clock delay (effect (b) in 
section 2) does not affect the a priori delay.  Of the delays reported by fourfit, only the total and residual 
delays, but not the a priori delay, can be affected by a time-tag shift.  
 
The Mk3 correlator used a reference-station time base in the sense that the Fourfit Reference Time (FRT) 
is the reception epoch of the wavefront at the reference station, and the data samples and correlated data 
are time-tagged based on the reference station time tags.  To see what happens when the clock model is 
changed, let the total delay be expressed as τtot(t0) ≡ τgeo(t0) + clockB(t0) ‒ clockA(t0) + τres(t0), where the 
first three terms make up the a priori delay, the fourth is the residual delay, and t0 is the FRT.  If the clock 
offsets are now shifted by δA and δB, the time tags at the reference station get shifted by ‒ δA.  As a result, 
the total delay at the FRT will change from τtot(t0) to τtot(t0 + δA) due to the time-tag shift, the a priori 
delay will change by δB ‒ δA, and the residual delay will change by τtot(t0 + δA) ‒ τtot(t0) ‒ δB + δA.  To first 
order in the delay time derivatives, the change τtot(t0 + δA) ‒ τtot(t0) in total delay is τ̇tot(t0) δA.  It is this 
dependence on delay rate that leads to a shift in solved-for UT1 when clock models are changed. 
 
Unlike the Mk3 correlator, a DiFX/HOPS correlator uses geocentric delay models and a geocentric time 
frame in the sense that the FRT is the reception epoch of the wavefront at the geocenter.  Because most 
(all?) geodetic VLBI analysis software packages assume a Mk3-style reference-station time base, the 
delays and rates from a DiFX correlator are converted in HOPS to a Mk3 frame before being entered in a 
geodetic database.  This conversion affects the geometric portion of the a priori delay (see, e.g., [2]) but 
not the clock delay.  Because the geocentric and Mk3-converted residual delays are expected to differ by 
<~0.2 ps for residual rates <10 ps/s [2], the Mk3-converted residual delay is set equal to the geocentric 
residual delay in HOPS.  Hence in HOPS there is no distinction between Mk3 and geocentric residual 
delay. 
 
The time-tag delay shift in a DiFX/HOPS correlator can be analyzed in a similar manner to the Mk3 
treatment above.  The a priori delay is the delay difference between the two geocenter-to-station delays: 
τap(t0) ≡ τB(t0) ‒ τA(t0), where each τX is the sum of geometric and clock terms; the total delay can be 
expressed in like manner.  If the clock offsets are now shifted by δA and δB, the total delay will change by 
[τB(t0+ δB) ‒ τB(t0)]  ‒  [τA(t0+ δA) ‒ τA(t0)]  =  τ̇B(t0) δB ‒ τ̇A(t0) δA, to first order in delay time derivatives.  
In the special case δA = δB ≡ δ, the change in total delay is simply τ̇tot(t0) δ.   
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Appendix 2.  Tests of effect of universal $CLOCK or sampler delay shift on fourfit delay and rate 
 
 
As described in [1], tests of the effect of shifting all $CLOCK models by the same amount have been 
conducted in which an entire Intensive session was correlated twice, once with clocks shifted and once 
unshifted.  The difference in UT1 values estimated from the correlated data matched the clock shift in 
magnitude and sign, as expected. 
 
A finer-grained test is to examine the effect on the fourfit total delay and rate for individual scans. 
 
In fourfit, the total delay at an arbitrary epoch during a scan is modeled as the sum of the a priori delay at 
epoch FRT and the residual delay model evaluated at the arbitrary epoch, where the residual model 
consists of a constant (i.e., the delay at the FRT) plus a rate term.  If the $CLOCK models for all stations 
are shifted by the same amount δ, the total delay will be unchanged if the FRT is shifted by ‒ δ.  On the 
other hand, if FRT is held fixed, the total delay will be the original delay at epoch FRT + δ.  
 
The last two statements require minor qualification in two regards.  First, the statements hold provided δ 
is small enough and/or the scan length short enough that the residual phase vs. time and frequency during 
the scan is well described by fourfit’s linear functions of time and frequency.  If δ is several seconds, say, 
mismatch between the a priori and actual fringe acceleration may be large enough to cause significant 
quadratic curvature in the residual phase time series.  As a result, the delay and rate fit to the residual time 
series will be in error.  Second, imperfections in the digital correlation process lead to differences between 
expected and observed delay changes, typically at the level of a small fraction of the formal error. 
Correlator repeatability tests provide evidence of this effect.   For example, Corey and Titus [3] found 
that, for small clock shifts of order 0.1 μs and 1 ps/s, the rms change in total MBD for a DiFX correlator 
was ~0.15 times the undifferenced MBD standard error.  Any change attributable to the time-tag shift 
would have been far smaller. 
 
Because the FRT can be changed only in steps of integer seconds in HOPS, tests of the effect of a 
universal $CLOCK shift are usually done with the FRT held fixed.  In this appendix we provide the 
results of a few such tests after first outlining the “theory”. 
 
Calculated change in total delay and rate 
 
Express the total delay time dependence as a fourth-order Taylor series about the FRT t0: 
 τ(t)  =  d0  +  d1 (t-t0)  +  d2 (t-t0)2  +  d3 (t-t0)3  +  d4 (t-t0)4 
Let the input data span a time interval 2T centered on t0. 
The change in delay and rate caused by adding δ to all $CLOCK values can then be calculated to be 
 Δτ  =  d1 δ  +  d2 δ2  +  d3 δ3  +  d4 δ4  +  (d3 δ  +  2 d4 δ2 ) T2  
 Δτ̇  = 2 d2 δ  +  3 d3 δ2  +  4 d4 δ3  + 12 d4 δ T2 / 5 
Note that, exclusive of the trailing term proportional to T2, the expected change in delay or rate is simply 
the Taylor series expression for delay or rate evaluated at t = t0 + δ minus the delay or rate at t = t0. 
 
“Observed” change in total delay and rate 
 
Two scans, one from RD1702 and one from RD1508, were each correlated thrice, once with nominal 
$CLOCK models and then twice more, each time with a common shift applied to the clock offset for all 
models.  The representative results in Table 1 were obtained from fringing the 8 USB X-band channels.   
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“O” is the observed change in total delay or rate, “C” the calculated change from the equations above, and  
σ the standard error of the associated undifferenced parameter. 
 
 

Table 1. Effect on total MBD and delay rate of applying a common clock shift to all stations. 
  multiband delay (ps) delay rate (fs/s) 

  baseline δ Δτ obs  Δτ O-C MBD σ (O-C)/σ Δ�̇�𝜏 𝑜𝑜𝑜𝑜𝑜𝑜 Δ�̇�𝜏 O-C rate σ (O-C)/σ 
  Ny-Wz 8 μs -6.3 -1.3 8.2 -0.16 0.2 0.3 22.0 0.12 
  Hh-Kb 100 μs 218.3 0.4 3.7 0.11 -1.8 -2.1 7.6 -0.16 
  Hh-Ny 100 μs 90.2 -0.7 8.6 -0.08 -7.1 -2.6 17.0 -0.15 
  Kb-Ny 100 μs -128.3 -0.2 3.2 -0.06 -5.8 -1.0 6.7 -0.15 
  Kb-Ny 1100 μs -1408.2 0.7 3.2 0.22 -55.0 -1.7 6.7 -0.25 

  Ny-Wz6 1 second -615805.7 3.1 8.6 0.36 -6276.5 -51.7 23.6 -2.19 
     RD1508: Scan 281-0344 with stations NYALES20 (Ny) and WETTZELL (Wz) 
     RD1702: Scan 025-0344 with stations HARTRAO (Hh), KASHIM43 (Kb), and NYALES20 (Ny) 
 
 
Table 1 demonstrates good agreement between observed and expected delay and rate shifts.  In particular, 
observed and calculated delays agree to <0.4 σ (column 6) and, in the Ny-Wz 1-second case in the last 
row, to 1 part in 2x105 (ratio between columns 3 and 4).  Rates are also well predicted except for the     
Ny-Wz 1-second case. 
 
Effect of universal shift in fourfit sampler delays 
 
In contrast with $CLOCK, universal sampler_delay shifts do not affect fourfit delays, as shown by tests 
carried out on WESTFORD-WETT13S data for VT7142 scan 143-1738.  Fringing was done for 
polarization Ixy with a control file that differed from the production file in two regards: only the eight 
band B channels were included, and no ionospheric delay fit was done.  When the sampler delays for both 
sites were changed by 200 ns, SBD and MBD were unchanged to < 0.01 ps.  If sampler delays affected 
time tagging in the same manner as $CLOCK models do, the fourfit delays should have changed by the 
product of 200 ns and the total delay rate, which in this case is 0.27 ps.  The fact that the fourfit delays did 
not change implies that fourfit does not adjust time tags for sampler delay. 
  

                                                           
6 For the Ny-Wz δ=1s case in the last row, the combination of a large value for δ and a long scan (440s) leads to a 
simple linear model in time being a poor model for the residual phase time series.  The scan was therefore fringed in 
eleven contiguous 40-s-long segments, with the FRT set to the midpoint of each segment.  The table values for 
observed Δτ and Δτ̇ (columns 3 and 7) are those of the middle segment, and the corresponding O-C values (columns 
4 and 8) are the means of the eleven individual O-C values. 
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Appendix 3.  Setting $CLOCK when band A delay differs from band B-D delay 
 

In this appendix we treat how to set the $CLOCK model for a station where the instrumental delay for 
band A differs from that for bands B-D by > 100 ns. 
 
Start by considering an ideal case where for each station all four bands have the same station delay and 
same VDIF-UTC offset, and the fringe phases for all 32 channels are zero.  (Real-world fringe phases can 
be made zero by applying pc_phases_x/y in fourfit.)  Now let one or more bands at a site have an 
additional station delay δ relative to the other bands.  If no changes are made in $CLOCK, there will be 
two changes to the pre-fourfit fringe phases7 in the bands with the added delay: 

1) they will shift by νRF δ due to the direct effect of delay on phase, and 
2) they will shift by νRF τ̇ δ due to the time-tag effect of Appendix 1, where τ̇ is the geocenter-to-

station delay rate. 
In fourfit the phase cal correction eliminates the first type of shift from the residual fringe phases, but the 
time-tag shift remains.  Note that the latter cannot be removed with fixed pc_phases_x/y values for an 
entire session because the phase shift depends on τ̇, which varies from scan to scan. 
 
In fourfit a function of the form φ0 + MBD (νRF ‒ ν0) + Kion / νRF is fit to fringe phase vs. RF frequency8, 
where the last term represents the ionospheric, or ‘dTEC’, delay.  When this function is fit to fringe 
phases of the sort described in the preceding paragraph, the MBD and Kion values will in general be 
nonzero.  Figure 1 shows the MBD and dTEC functions for the 15 possible combinations of bands with a 
delay offset, and Table 2 lists the MBD and Kion values.  RF frequencies are those for CONT17, and 
fringe amplitudes are assumed to be flat over frequency.  The four identifying integers for each 
combination refer to bands A-D, with a ‘1’ signifying an offset δ is present and a ‘0’ signifying no offset. 
 
Of relevance to the issue of stations with a large instrumental delay offset between band A and bands B-D 
are the two cases ‘1 0 0 0’ (top left panel in Figure 1) and ‘0 1 1 1’ (bottom middle panel).  Their MBD 
values are both 0.50 τ̇ δ, and their Kion values have the same magnitude and opposite sign.9 
 
With these two results in hand, one can calculate a clock peculiar offset δ0 for which the MBD is zero 
when fitting to the band-dependent time-tag fringe phases.  Let δA be the station delay for band A, and let 
δBCD be the delay for B-D.  From the results cited in the preceding paragraph, the net MBD relative to δ0 is     
0.5 τ̇ (δA ‒ δ0) + 0.5 τ̇ (δBCD ‒ δ0).  Setting this expression to zero yields δ0 = 0.5 (δA + δBCD).  The effect of 
band-dependent station delays on MBD can thus be eliminated by setting the peculiar offset to midway 
between the band A and bands B-D station delays10. 
  

                                                           
7 The sign of the phase shift will be positive or negative depending on whether the station is reference or remote, but 
that fact will prove to be irrelevant. 
8 The delay rate and SBD observables that fourfit also estimates are ignored here. 
9 Because least-squares is a linear process, the MBD and Kion values for two complementary combinations like       
‘1 0 0 0’ and ‘0 1 1 1’ must sum to the MBD and Kion values for ‘1 1 1 1’.  The latter values are τ̇ δ and zero, 
respectively – see bottom right panel in Figure 1 and last line in Table 2.  That ‘1 0 0 0’ and ‘0 1 1 1’ have Kion 
values of opposite sign is therefore to be expected.  That they have the same MBD values appears to be purely 
coincidental, as that is not true for other frequency sequences or when fringe amplitudes are not assumed flat. 
10 By a similar argument, in the general case of different station delays in all 4 bands, the peculiar offset δ0 that 
eliminates this effect is 0.500 δA  – 1.441 δB – 1.449 δC + 3.390 δD when fringe amplitudes are flat.  The four 
coefficients are the MBD values in the first four lines of Table 1. 
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Figure 1. MBD + dTEC model fits to channel fringe phase vs. frequency for 15 combinations of bands 
for which fringe phase is offset from zero by νRF τ̇ δ.  The four integers in each panel refer to bands A-D, 
respectively, with ‘0’ meaning no offset and ‘1’ meaning an offset is present.  Channel frequencies are 
those of CONT17, and fringe amplitudes are the same in all channels. Red ‘X’ = channel fringe phase, 
dashed blue line = best-fit MBD + phase offset, dotted green line = best-fit ionospheric ‘dTEC’ model, 
red solid line = MBD + dTEC models.  Units for fringe phase ordinate are degrees when τ̇ δ = 1 ps. 
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Table 2.  Parameter values from model fits shown in Figure 1. 

Fringe phase offset present? 
 (0=no, 1=yes) 

MBD 
 (units of τ̇ δ) 

Kion 
(units of τ̇ δ deg GHz2) 

band A band B band C band D    
1 0 0 0 0.500 11 330 
0 1 0 0  -1.441 -16 100 
0 0 1 0 -1.449 -19 190 
0 0 0 1 3.390 23 960 
1 1 0 0 -0.941 -4 771 
1 0 1 0 -0.949 -7 864 
1 0 0 1 3.890 35 290 
0 1 1 0 -2.890 -35 290 
0 1 0 1 1.949 7 864 
0 0 1 1 1.941 4 772 
1 1 1 0 -2.390 -23 960 
1 1 0 1 2.449 19 190 
1 0 1 1 2.441 16 100 
0 1 1 1 0.500 -11 330 
1 1 1 1 1.000 0 

 
 
 
Depending on the clock-setting procedure (see section 5), it may not be possible to set the peculiar offset 
precisely to the midway station delay.  To apply procedure (c) or (d) to the situation at hand, the only 
modification needed to the description in section 5 is that now it is the mean of the band A and bands B-D 
sampler_delay values that is to be set between -100 and +100 ns.  The peculiar offset will differ from the 
midway station delay by that mean value (or, strictly speaking, by the mean of the band A and bands B-D 
PC delays), and the time-tagging will be in error by the same amount.  
 
As a test of the robustness of this method vis-à-vis fringe amplitude differences among bands, the best-fit 
‘1 0 0 0’ and ‘0 1 1 1’ MBD values were determined with weighted least-squares for the 15 independent 
cases where fringe amplitudes were the same for all channels in a band but could differ from band to 
band, with a value of either 1 or 2.  The best-fit MBD values were all between 0.4 τ̇ δ and 0.6 τ̇ δ, not far 
from the 0.5 τ̇ δ found for flat amplitudes.  The maximum difference of 0.1 τ̇ δ from the flat-amplitude 
value leads to a maximum error in the net MBD of 0.60 τ̇ (δA ‒ δBCD) / 2 ‒ 0.40 τ̇ (δA ‒ δBCD) / 2 =           
0.1 τ̇ (δA ‒ δBCD).  For |δA ‒ δBCD| = 300 ns, the maximum error from non-flat amplitudes is equivalent to 
the time-tag error caused by a 30-ns error in $CLOCK. 
 
For frequency sequences other than CONT17 (e.g., that proposed by Bill Petrachenko in a 2018 April 1 
email), the parameter values will differ from those in Table 2, and the ideal station delay to use in 
$CLOCK will accordingly differ from the mean A + BCD delay found for CONT17.  In some test cases it 
was found that the MBD parameter was much more sensitive to band dependence in the fringe amplitudes 
than for the CONT17 sequence.  In such cases the maximum error from non-flat amplitudes may be 
unacceptably large. 
 


