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ABSTRACT 

 
A 3-element interferometer built using very small radio telescopes (VSRT’s) 
was used for observing the Sun at a frequency band of 35 MHz wide centered at 
12.086 GHz daily. The signals from the LNBF’s are processed with a USB 2.0 
video grabber and other inexpensive consumer electronics. The baselines used 
were based on a reference between the two adjacent dishes and thus, the 
baselines of the first two dishes are the same; 0.2699 meters, and the distance 
from that center point to the third dish is 2.9464 meters. Data from the Sun was 
collected over a two month period and software was used to calculate the fringe 
visibility amplitudes and closure phase. Modeling programs were developed to 
imitate the Sun’s chromospheric behavior and a comparison of the closure phase 
between the VSRT data and the model’s curves was achieved via least-squares 
analysis and construction of surface plots to display the sensitivity of the model 
as different parameters varied, which would yield solutions to the least squares 
problem. Various approaches were taken to examine the sunspot activity. The 
software was developed in two languages; Matlab and Python, and the 
motivation for using Python was to make the software system accessible to 
community colleges and introduce radio interferometry, since it’s freely 
downloadable. The cardinal factors that contribute to the visibility of the model 
include the uniform Sun component, a linear brightness gradient applied to 
simulate dish mispointing, limb brightening and a changeable sunspot of varying 
intensity. We found that the more sophisticated limb brightening (adding many 
rings) tended to fit the actual data a lot better than the previous limb brightening 
profile did (only one outer ring). Although dish mispointing made it difficult to 
infer information about the Sun at times and the sun was not showing much 
activity during the summer, we were not only successfully able to detect sunspot 
activity using the 3-element VSRT system, but also observed a decaying trend 
of the sunspot’s intensity over a period of six days. The hardware of the 3-
element VSRT system was also documented in detail. 

 
1  Introduction 
 
The purpose of this paper is to describe 
the VSRT hardware system and explore 
the ways in which the VSRT’s can be 
used for solar research. They’re still 
being developed and it’s interesting to 

see what can be achieved with such 
small dishes and a smart 3-element 
interferometer setup. The closure phase 
was observed and deviations from ideal 
conditions were explained. 
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In the following, we give an introduction 
on solar physics, then describe the 
VSRT observing hardware system, give 
a description of the concepts used for 

modeling the Sun’s radio image, 
describe the software developed and the 
tools used to analyze the data collected. 
Finally, we discuss the results. 

 
2  Solar Physics Background 
 
2.1  General Physics of the Sun 
 
The Sun can be assumed to give out 
radiation in three main parts; the quiet 
sun component (always present), the 
slowly varying component and the active 
sun component (caused by sunspots, 
flares). The quite sun component arises 
from thermal emission from the hot 
ionized gas. The effect of all elements 
other than hydrogen on the mean degree 
of ionization is small. These effects can 
be neglected and the solar atmosphere is 
regarded as a fully ionized hydrogen gas. 
 
To understand from which part of the 
Sun’s atmosphere this emission arises, 
one needs to consider the main opacity 
source at radio wavelengths. (The 
opacity is the measure of how much a 
wave gets absorbed as it travels through 
a medium.) The main source of opacity 
in the Sun’s atmosphere at radio 
wavelengths is electrons. The electron 
density in the chromosphere is 
represented by an exponential 
distribution, as suggested by Cillié and 
Menzel (6), and depends on the height 
above the photosphere. (The larger the 
height, the less the intensity of the 
central beam.) Most of the emission 
comes from the region where the 
opacity, τ is near 1, since the higher 
optical depth regions cannot be 
penetrated and the low optical depth 
regions do not produce enough emission. 
At a frequency of 1.4 GHz (λ = 21 cm), 
the emission originates from the top of 
the chromosphere and is seen as a 

100,000 °K blackbody. In physics, a 
blackbody is an object that absorbs all 
EM radiation falling into it. In other 
words, the amount of wavelength of EM 
radiation it emits is directly proportional 
to its temperature. At longer 
wavelengths, the emission arises from 
the corona and is a 2 million °K 
blackbody. This also means that the size 
of the sun measured at the different 
frequencies varies. The lower the 
frequency, the larger the radius of the 
sun appears. 
 
The other two components are related to 
sunspots. The slowly varying component 
is also thermal in origin and arises from 
the region above the sunspots where the 
electron density is higher. The 
blackbody temperature of these regions 
can be as high as 2 million °K. Thus, the 
regions above the sunspots can 
contribute more radio emission than the 
total area without sunspots and increase 
the total radio flux relative to the quite 
sun. The Sun acts like an extended 
source and thus will be resolved on the 
longer baselines. The Sun’s atmosphere 
consists of the photosphere, the 
chromosphere and the corona. 
Chromospheric frequencies are referred 
to those above 10 GHz, as the corona is 
practically transparent. At 
chromospheric heights, the temperature 
distribution is of the order 104 °K. 
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The problem of the transfer of radiation 
in an ionized gas has been discussed by 
Smerd and Westfold (7). Considering 
radiation only in a frequency interval, 
changes in the intensity of that radiation 
along a path, due to emission and 
absorption in an elementary cylinder of 
the medium of refractive index μ, are 
related by the equation of transfer. A 
solution is found under conditions of 
thermodynamic equilibrium, using the 
Rayleigh-Jeans radiation formula since 
we’re concerned with radio frequencies, 
and finally assuming a uniform 
temperature region. The resulting 

equation indicates that the emerging 
intensity is directly related to 1- e-τ. The 
distribution of electron velocities in the 
solar atmosphere is assumed to be 
Maxwellian and brought about by 
collisions. From the discussion of 
transfer of RF radiation in the solar 
atmosphere, to evaluate the intensity of 
radiation emerging from the solar 
atmosphere, we require the ray 
trajectories, the optical depth (opacity) 
of the medium along any trajectory and 
the temperature distribution in the solar 
atmosphere. 

 
 
2.2  Ray Trajectories 
 
Just like Smerd (4) has analyzed in great 
detail, to examine ray trajectories, one 
must consider the paths through the solar 
atmosphere of those RF rays which can 
be received at the earth. The refractive 
index μ of an ionized medium decreases 
with increasing electron density. As a 
result, a ray passing through the solar 
atmosphere experiences continuous 
bending by refraction. If the propagation 
of radiant energy is in the direction of 
decreasing μ (towards the sun), the 

bending will be away from the normal to 
a sphere of constant μ. A point is 
reached where the direction of 
propagation is tangential to such as 
sphere after which propagation must be 
in the direction of increasing μ. The 
point where the direction of propagation 
changes from that of decreasing μ to that 
of increasing μ is the turning point. To 
aid visualization, trajectories at a 
frequency which can penetrate into the 
chromosphere are sketched: 

 

 
Figure 2.2.1: Ray trajectories at an “intermediate” frequency (after Smerd 1950). 
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After defining the difference in optical 
depth of two points on a trajectory as the 
optical thickness between the two points 
and taking the absorption coefficient and 
the refractive index from the Lorentz 
theory, mathematical descriptions of the 
optical thickness τ1,2(d) have been 
provided by Smerd. The solution of the 
equation of transfer, along with the 
physical properties of the solar 
atmosphere, the ray trajectories and the 
optical depth, enable us to discover the 
intensity of RF rays emerging from the 
solar atmosphere. In fact, at a given 
frequency, rays near the center penetrate 
deeper into the solar atmosphere than 
those near the limb, and for a given ray 
position, a higher frequency penetrates 
more deeply than a lower one. 
 

According to Smerd’s analysis on ray 
trajectories, it is possible to express the 
emergent intensity in terms of 
temperature. After sketching trajectories 
at a frequency which can penetrate 
through into the chromosphere (figure 
2.2.1), he found that as the distance d, of 
the trajectory from the center of the disk 
increases, the optical thickness τc(d) and 
the effective temperature Te(d) tend to 
increase due to the lengthening of the 
path between the same two heights in the 
atmosphere and to decrease due to the 
increasing height of the turning point. 
Since we’re observing at a frequency of 
12 GHz (λ = 2.5 cm), according to 
Smerd, we mostly have a uniform 
effective temperature as we range across 
the distance from the center of the disk. 
This can be inferred from the figure 
below: 

 

 
Figure 2.2.2: The computed effective temperature (brightness distributions) over the solar disk at 

different radio frequencies. The values used for chromospheric and coronal temperatures are 
3x104 and 106 °K respectively (after Smerd 1950). 

 
Since the effective temperature 
(brightness temperature) at our 
wavelength tends to be uniform and 
relatively small, we expect the opacity 
(optical depth) to decrease as well. Thus, 
from the solution of the transfer equation 
(assuming uniform temperature in the 
chromosphere), it makes sense to expect 

the intensity to be uniform and relatively 
smaller than that of other smaller 
frequencies (low opacity corresponds to 
low intensity). Another interesting 
observation can be seen from figure 
2.2.2; as the frequency increases, the 
“size” of the radio disk decreases. This is 
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due to the fact that the optical depth (τ) 
varies as 1/f2. 
 
In summary, at chromospheric 
frequencies, the effective temperature of 
any ray within the disk (0 < d < 1) is just 
the chromospheric temperature, since the 
medium effectively has an infinite 
optical depth along such trajectories. For 
rays outside the disk, the optical 

thickness of the medium (and the 
effective temperature) falls off rapidly as 
the distance of the trajectory from the 
center of the disk increases. The disk at 
these frequencies has uniform intensity 
(assuming a uniform chromospheric 
temperature) and a well defined limb. 
Limb brightening across the disk would 
indicate a chromospheric temperature 
gradient. 

 
 
3  Hardware System 
 
3.1  Parts 
 
The major parts of the 3-element VSRT 
system include the dishes, the feeds and 
low-noise amplifiers. These outdoor 

components as well as antenna 
positioning systems, coaxial cables, and 
connectors are essential. 

 
3.1.1  Antennas 
 
For the VSRT’s, we use 45 cm diameter 
"Direct TV" satellite dishes with their 
satellite TV low-noise block-down 
converter feeds (LNBF’s) which operate 
in the 12.2 to 12.7 GHz band. The 
signals from the LNBF’s are processed 
using a USB 2.0 video grabber along 
with other inexpensive consumer 
electronics. The dishes are parabolic in 
order to reflect radio waves to the 
subreflector. Since radio-astronomical 
sources are far away, treating the Sun as 
a point source, incoming signals tend to 
look like plane waves and the VSRT 
must catch as much energy as possible 
from this wave and avoid as much as 
possible any other signals, especially 
local interference. The parabolic antenna 
concentrates all this energy into a small 
spot where a feed is placed. A typical 
antenna has a noise temperature ranging 
from 20 to 50 K, resulting principally 
from the ground noise component, which 
has a temperature of about 290 K. The 

most critical gain and hence the most 
critical signal losses in a satellite system 
occur before the LNB. The dish and the 
feed system must work as a team to 
extract the maximum signal. Dish gain is 
dependent on three factors: surface 
accuracy, dish pointing accuracy, and 
the match between the feedhorn and the 
parabolic surface. If any of these are 
inadequate, gain will drop rapidly as the 
error increases.  
 
Mispointing can be caused by several 
factors. The most common problem is 
poorly chosen and installed actuators. 
Torque, cable runs and jack size all 
affect actuator action. Some positioning 
systems start and stop the motor at full 
power. This causes a jerking motion as 
the antenna begins to move and as it 
stops. This can shake the structure 
causing screws and bolts to loosen. 
Another factor is the structure used. In 
our case, we had the VSRT dishes 
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installed on a table outside, as shown in 
figure 3.1.1.1. Rain causes the tables to 
sink, and then the dishes are mispointed. 
Then, we need to re-level them by 
changing the balance again by placing 
materials under the legs of the table. 
 
The VSRT dishes used are offset fed 
dishes, which can have much smaller 
diameters than other satellite dishes. To 
visualize the geometry of an offset 
system, picture an oval cut from the 
upper central portion of a larger 
parabolic reflector. While the feed 
remains at the focal point of the larger 
antenna, only this smaller section of 
reflector remains. The feedhorn is 
therefore located below the lower edge 
of the offset fed reflector. Below is a 
picture taken of a VSRT dish: 
  

Figure 3.1.1.1: VSRT dish tracking the 
Sun 

 
3.1.2  LNBF’s 
 
Mounted at the dish’s focal point is a 
feedhorn. The feedhorn is the front-end 
of a waveguide that gathers the signals at 
the focal point and conducts them to a 
LNB (low-noise block-down converter), 
which converts the signals from 
EM/radio waves to electrical signals and 
shifts the signals to IF (in our case, the 
feedhorn is integrated with the LNB). 
The feeds of the antennas collect the 
radio power from the distant celestial 
source. A waveguide is like a hollow 
piece of coaxial cable and is one of the 
most efficient methods developed to 
transport high frequency signals. The 
transmission of EM energy depends 
upon reflection of signals by the internal 
walls of the waveguide as well as upon 

current transfer along its surface. To 
properly collect the reflected microwave 
energy, a feed must ideally “see” or 
illuminate the entire surface of an 
antenna and nothing else. If the feed is 
not matched to the f/D ratio of the dish, 
then it may see beyond the edge of the 
dish and allow earth noise to enter. 
When the f/D ratio and the feed are 
properly matched and focused, then the 
dish is optimally illuminated. Figure 
3.1.2.1 shows the triple feed LNB, which 
shows that the dish is being pointed 
correctly. We can see that the image of 
the Sun is centered at the third feed, 
which is an indication that the pointing 
for this dish is good. Figure 3.1.2.2 
shows how the LNBF looks like inside. 
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Figure 3.1.2.1: Triple feed LNB is active 

 

 
Figure 3.1.2.2: Internal circuit of the LNBF used 
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3.1.3  Cabling 
 
The three antennas are connected with 
coaxial cable. The outer jacket protects 
the cable from moisture, oil, oxidation, 
ozone, acids, and abrasion. The outer 
conductor shields the inner conductor 
from external EM forces and functions 
as the ground return path. The dielectric 
core sets up the impedance of the cable 

and also insulates the center conductor 
from the shield. The center conductor 
transports the signals from one end to 
the other and must make good 
mechanical conduct at both ends using 
some type of connector. Below is a 
picture of the coaxial cabling installed at 
the dish structure outside: 

 

 
Figure 3.1.3.1: Coaxial cables installed on dish structure 
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3.2  Simple Block Diagram 
 
Below is a simple block diagram of the 3-baseline VSRT interferometer system developed: 
 

Σ

LNA

LNA

LNA IF Amp

IF Amp

IF Amp

Square-Law 
Detector

Local Oscillators

7113 2820 PC
Java

USB

time

Switch

Azimuth Elevation

motors (az.)

motors (el.)

Direct TV 18 x 20'’ 
offset parabolic dishes

9-bit Video Input 
Processor

USB Video 
Capture Device

11.25 GHz

11.25 GHz

11.25 GHz
short

intermediate

long

750 MHz

750 MHz

750 MHz

12 GHz

 
Figure 3.2.1: Simple Block Diagram 

 
The system of coordinates used is an 
azimuth-elevation system. The azimuth 
is the horizontal angle measured from 
north, going clockwise to the object of 
interest. The altitude (elevation angle) is 
measured upwards from the horizon to 
the object. The coordinates of a celestial 
object in the horizon system change 
continuously during the day because of 

the earth’s rotation. It is convenient to 
use elevation and azimuth angles in 
setting the VSRT’s because it is 
steerable around vertical and horizontal 
axis. Below is a picture of the VSRT 
rotation system controlling the two 
adjacent dishes. The azimuth and the 
elevation motors can be clearly seen. 
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Figure 3.2.2: VSRT rotation system controlling two adjacent dishes 

 
The local oscillator is a device used to 
generate a signal which is beat against 
the signal of interest to mix it to a 
different frequency. The LNB is fixed on 
the satellite dish. Satellites use 
comparatively high radio frequencies to 
transmit their signals. When radio 
signals are transmitted through coaxial 
cable, the higher the frequency, the more 
losses occur in the cable per unit length, 
which is the main reason that 

waveguides are needed. The job of the 
LNB is to use the superheterodyne 
principle to take a wide block of 
relatively high frequencies, amplify and 
convert them to similar signals carried at 
a much lower frequency (IF). These 
lower frequencies travel through cables 
with much less attenuation of the signal, 
so there’s much more signal left on the 
receiver end of the cable. 
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3.3  Detailed Block Diagram 
 
Below is a more detailed diagram of the hardware involved in the 3-baseline interferometer 
system: 
 

 
Figure 3.3.1: Detailed Hardware Schematic 

 
The hardware include 18’’x20’’ 
DIRECTV Satellite Dish Antennas with 
3 dual LNB’s (AU2-F1), a DC-pass 4 
way power splitter (HS-4), an Inline 
Amplifier (CAE 9220), several power 

injectors (15-1170) and 15 V AC-to-DC 
power adapter (273-1691), 3-Amp barrel 
diodes 1N5404 (276-1114), some male-
to-male “F” connector adapters (278-
219) and “F” connector to BNC jack 
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adapters (278-277), coaxial adapters 
(BNC female/RCA male) (278-250), 
detector diode 1N6263 (497-2508-1-
ND), M61235 6’ RG-6 cables with F 
connectors (M61235), 6-ft RG-59 
Coaxial cable (BNC) (278-990), 
resistors, a 100 pF capacitor, a 
CompUSA Video Grabber USB 2.0 

(SKU 318714) and a JcommUSB API 
(Personal edition). The main sources 
were Amazon.com, RadioShack, 
Icaste.com and CompUSA. As can be 
seen in figure 3.3.1, the detector section 
consists of two diodes and a capacitor, 
and was soldered together as shown 
below: 

 

 
Figure 3.3.2: Detector Hardware 

 
Also, as shown in figure 3.3.1, we need to drop the +15 V voltage down to +13.5 V using two 
diodes in series for the DC power injectors. Here’s how this was done: 
 

 
Figure 3.3.3: Diode drop for DC Power Injector 

 
 
3.4  Motor control 
 
Motor control for the Sun tracking 
system can be handled using a “horizon 
to horizon” satellite dish drive. These 
drives are available from an Italian 
company called stab. The HH90 unit 
costs $80. An industry-standard 
communication protocol known as 
DiSeqc has been developed for these 
drives. An inexpensive solution consists 

of using a RS232 solid state switch 
module to “push” the buttons on the 
handheld Stab MP01 DiSeqc 1.2 control 
($39). The MP01 generates three DiSeqc 
1.2 commands: move 1 step East, move 
1 step West, go to zero position. Below 
is a detailed schematic of the motor 
control used in the VSRT setup. 
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Figure 3.4.1: Motor control Block Diagram 

 
Below is a picture of the actual Stab MP01 DiSeqc used: 
 

 
Figure 3.4.2: Stab MP01 DiSeqc 
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4  Concepts Used for Modeling the Sun 
 
4.1  Visibility 
 
By visibility, we represent the amplitude 
of the observed lobe pattern; the fringe 
amplitude (fringe visibility). The 
complex visibility function is equal to 
the Fourier transform of the source 
brightness distribution. The visibility of 
the solar disk can be expressed as a 2D 
integral: 
 

∫ ∫=
R

jrz rdrderBzV
0

2

0

)(),()(
π

ϑ ϑϑ , 

where ),( ϑrB  is the brightness as a 
function of the polar coordinates. 

The visibility is normalized by dividing 

by ∫ ∫
R

rdrdrB
0

2

0

),(
π

ϑϑ . The calculation of 

the 2D integral can be done in 
rectangular coordinates as well. In this 
case, the visibility can be rewritten as the 
2D Fourier transform of the brightness. 
It is convenient to approximate this 
calculation using the superposition of 
several 1D integrals, instead of using a 
heavily oversampled DFT

For a uniform disk, we compute the normalized visibility as follows: 
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where R represents the angular radius of 
the sun (radians); z represents the 
interferometric phase in radians per 

radian, in fact, 
λ

π projbasez 2= , where 

22 ][_][_ basenorthbbaseeastbprojbase +=
. 

 
For reference, the simplification to a first order Bessel function was developed as follows: 
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For a uniform disk plus an outer ring, we have: 
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, where F represents the fraction of the Sun’s radio output in the 

enhanced brightness of the limb 
 
For a uniform disk plus many weighted rings: 
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When r1 ≤  r < R, rbearw 1

1)( = , 
and when R ≤  r ≤  r2, rbearw 2

2)( −= ,  
where a1, a2, b1, b2, are the coefficients 
derived from the solution of the 
following two nonlinear systems of 
equations: 
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In this case, F is the fraction of limb 
brightening. The parameters offset_1 
and offset_2 give more degrees of 
freedom to the limb brightening profile. 
They can be described mathematically as 
follows: 
 

11_ rRoffset −=  
Rroffset −= 22_  

 
In the program, these were set to offset_1 
= 0.01 and offset_2 = 0.02. The 
following plot shows these parameters 
graphically: 
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Figure 4.1.1: Limb brightening with many outer rings 

 
We found that the model fits the data 
much better when we used more rings 

for limb brightening. So far, the 
visibility is )()()( lim zVzVzV buniform += . 
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Note that the weighting function w(r) 
varies across the disk (as the radius 
changes) and controls the exponential 
increase or decay of the limb brightening 
profile. The main effect of this more 
sophisticated limb brightening technique 
is the widening of the closure phase. 
 
Another factor that was added was the 
linear gradient applied across the disk. 
Even with the relatively large 4° beam of 
the VSRT, a brightness gradient of up to 

about ± 20% from limb to limb can be 
introduced by miss-pointing of the dish 
so that the Sun lies on the edge of the 
beam. (This was done to simulate 
pointing errors.) The linear gradient was 
approximated numerically, since there’s 
no nice function such as Bessel functions 
that fits that curve. 
 
The normalized gradient was to be added 
on top of the normalized visibility, 
obeying superposition: 

 

4

)sin(
)( 2

0

22

R

dr
R
rrzrR

zV

R

g π

β
∫ −

= , where rz is in radians, and β is the gradient fraction 

 
So far, the visibility is given by 

)()()()( lim zVzVzVzV gbuniformsun ++= . 
To add a sunspot, we simply add the 

sunspot’s contribution by taking the 
magnitude and normalizing:

 
 

)cos(* 2 ϑaspotampVspot = , where a2 is the fraction of flux in the spot (
R

spotsizea = ) 

spotsun VzVV += )(  , where
λ

πππ
ϑ

)
180

][_
180

][_(2 ybasenorthbxbaseeastb +
= , where λ  is the 

wavelength (
f
c

=λ ) and x and y are defined as the following: 

 
x = spotrad*cos(spotang), where spotang is in radians 
y = spotrad*sin(spotang) 

 
where spotang = angle around the sun (radians) 
          spotamp = sunspot amplitude (intensity) 
        spotrad = distance away from the center of the sun (in units of R: set to 0.2 R) 
        spotsize = size of the sunspot (in units of R: set to 0.1 R) 
 
The parameters b_east[base] and 
b_north[base] are the u and v projected 
baseline components. The projected 
baseline is computed by squaring, 
adding and taking the square root of the 

u and v components, as shown above. 
The final normalized visibility with the 
contribution of the sunspot is computed 
as follows: 
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where 2*1 aspotampnsum +=  and )sin(* 2 ϑaspotampsumi =  
 
 
4.2  Closure Phase 
 
Suppose we have a three element interferometer set up like the following: 
 

 
Figure 4.2.1: Simple 3-baseline Interferometer 

 
Let the complex visibility of the fringe associated with baseline bjk be denoted by Vjk. Then, we 
have: 
 

jkj
jkjk eVV φ||=  

 
Denoting the measured phase of each 
fringe as φjk, we can describe it 
mathematically: 
 

jkkj
source

jkjk δεεφφ +−+= , where 

kj εε ,  are atmosphere turbulence-

induced phase errors at the jth, kth 
apertures, and jkδ  indicates 
measurement noise. Now, the three 
measured phases in a 3-element 
interferometer are summed to compute 
the closure phase φc: 

 

)(

)()()(

312312312312

311331233223122112

δδδφφφ

δεεφδεεφδεεφφ

+++++=

+−+++−+++−+=
sourcesourcesource

sourcesourcesource
c  

 
The closure phase is insensitive to phase 
errors induced by the atmosphere, but 
the measured closure phase is corrupted 
by measurement noise. The visibilities 
can be superimposed as we add more 
things on top. The closure phase can 
only take on values of 0 or 180° for any 
source that has reflection symmetry 

about a line through the centroid 
(uniform sun). However, when we add 
limb brightening or sunspots, the closure 
phase can smoothen out (at the sharp 
transition points) or spread out/in its 
transition points (from 0 to ± 180°, and 
vice-versa). 
 

Dish3 

Dish 1 
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Least squares analysis was applied to the 
closure phase curves. A sum of least 
squares can be calculated by squaring 
the residuals and taking their sum. The 

residual is simply the difference between 
the observed and the predicted (model) 
value. 

 

∑
=

−=
n

i

predicted
i

data
i yysum

1

2)(  

where data
iy  is the actual data collected for the closure phase, 

    and predicted
iy  is the predicted data computed from the model. 

 
 
5  Software Development 
 
Data was taken using a real-time Java 
console data acquisition program, which 
allowed us to record the visibility 
amplitudes and the closure phase in 

RAD files. These files were later read by 
Matlab or Python. Below is a screenshot 
taken while collecting data with the Java 
GUI: 

 

 
Figure 5.1: Java GUI real-time data acquisition system 

 
What we can clearly see in the figure 
above is that the VSRT’s are tracking 
the Sun, and that a text file is being 
recorded. We can see the UT time, the 
position of the Sun relative to the Earth, 
and at the top right, the spectrum of 
three fringes; starting from the right, we 
see the intermediate, then the long, and 
finally the short baseline. 

 
Programs were developed in MATLAB 
to read the data collected from the RAD 
files and compare them with the model 
developed. These programs are 
parameterized in a way so that when the 
user runs them, he specifies whether a 
sunspot should be applied (along with its 
amplitude), whether or not limb 
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brightening should be added (and its 
amount), whether or not to use many 
rings or one outer ring for limb 
brightening, and whether or not a linear 
brightness gradient should be added (and 
its amount). The motivation for this is 
that using MATLAB, the user can 
quickly tweak the parameters and rerun 

the simulation to see the effect on the 
model’s curves. More advanced 
programs that handle the least-square 
analysis task were also developed. 
Further information about these 
programs can be found in the “VSRT 
Software Documentation” document. 

 
 
6  Results & Discussion 
 
On July 8th, an intense sunspot appeared 
on the sun, and it is of interest to see 
how well we can detect that change on 
the sun’s surface using the 3 baseline 
VSRT interferometer system. To do this, 
we utilize the concept of a closure phase. 
With three LNB’s, the phase of the 
fringes can be added up by going around 
a triangle of baselines. We then get a 
“closure phase” when the local oscillator 
phases cancel. An interesting fact about 
the closure phase is that is independent 
of the station atmosphere and local 
oscillator phases. Since it’s largely free 
from instrumental errors (slightly 

corrupted by measurement noise), it can 
be used to model source structure and 
remove the ambiguity in structure 
modeled with the visibility amplitudes 
alone. 
 
Using this closure phase concept, for a 
completely uniform Sun, with no 
sunspot activity or limb brightening, we 
would expect a jump from 0 to ± 180° at 
around 16.25 hrs (UT) and another jump 
from -180 to 0° at about 17.5 hrs (UT), 
just like shown below in the simulation 
for day 192 (blue line): 
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Figure 6.1: Simulation showing normalized visibility plots and closure phase 
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The data collected around day 190 (July 
9th) suggest that there exist deviations 
from this ideal case. Indeed, when we 
run our simulation model with a certain 
sunspot of some intensity, we see that 
the model’s curves tend to fit the actual 
data better. The parameters that enter the 
model include a surface gradient, limb 
brightening, the angular radius of the 
Sun, and sunspot attributes. The linear 
surface gradient is applied to account for 
pointing errors of the hardware. Limb 

brightening is applied to simulate the 
limb brightening of the sun’s disk. 
Sunspot attributes include its position on 
the sun (set by its angle and distance 
away from the center of the disk), its 
relative flux and its intensity. 
 
Although the observing frequency of the 
Nobeyama RadioHeliograph is at 17 
GHz, we can use their daily images to 
evince the existence of solar activity for 
days 189, 190, 191, 192 respectively: 

 

 

 
Figure 6.2: Nobeyama RadioHeliograph images at 3 UT 
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For these four days, according to the Nobeyama RadioHeliograph, the solar radius is displayed in 
the table below: 
 

Table 6.1: Solar radius across a period of 4 days at a frequency of 17 GHz 
Day of Year Solar radius (arc seconds) Solar radius (degrees) 

189 955.676 0.2654656 
190 955.690 0.2654694 
191 955.709 0.2654747 
192 955.732 0.2654811 

 
Since our observing frequency is less 
than 17 GHz, we expect the sun to 
appear larger, thus, a larger angular 
radius. To run the models for these days, 
we need to determine a value for the 
solar radius. Selhorst has published some 
papers on radius variations over a solar 
cycle, and he found that the overall mean 
radius varied from 976.6 ±  1.5 arcsec to 
974.8 ±  0.6. (0.2706 to 0.2717 degrees), 
using daily maps covering about one 
solar cycle (1992-2003). He states that 
solar radius measurements at radio 
frequencies are not a simple task, 
because the Sun lacks a clear quiet 
atmosphere. This atmosphere is filled 
with ever-changing small structures, 
such as sunspots, prominences, spicules, 
faculae, that are prominent in the 
observed radio Sun. These features 
influence the choice of where the solar 
radius is measured. If the atmosphere 
had a smooth profile, the brightest point 
at the solar limb would be close to unity 
at a certain frequency (τ = 1). Selhorst et 
al. (2003), however, showed that the 
limb brightening intensity at 17 GHz is 
not uniformly distributed around the 
Sun, being larger near the polar region, 
indicating the influence of features such 
as spicules in the maximum brightening. 
This was accounted for in the model by 
adjusting the limb brightening profile, 
using exponential rising and decaying 
envelopes. After a lot of simulations and 
fitting throughout these days, we found 

that the data is best fit when R = 0.275°. 
In fact, we noticed that as the solar 
radius increased, the closure phase tends 
to become narrower; the transitions from 
around zero to ± 180°, and vice-versa. 
Thus, most models use this value for the 
solar radius. 
 
Since our model contains quite a few 
parameters, which leads to extensive 
amounts of tweaking these parameters, a 
program was developed to construct a 
surface, plotting the sum-of-squares 
across a set of two parameters. Since our 
model seems to be quite sensitive to the 
angular radius of the Sun, I decided to 
vary the solar radius and the sunspot’s 
intensity and compute the sum-of-
squares based on these two variables. 
The resulting surface would show 
exactly how sensitive the model really is 
to the solar radius. Another reason why 
this approach was taken to solve the 
least squares problem is because the 
closure phase is nonlinear, so the best 
model has to be found by iterating 
through the parameter space to find the 
best fit; the fit that minimizes the sum of 
the squares of the residuals. The sum of 
squares depends only on the closure 
phase data collected, and not on any 
normalized visibilities of the baselines. 
The reason for that is, because the 
visibilities are scaled, and thus a scaling 
offset can throw off the best fit by a 
large amount, and fitting the baselines 
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closely doesn’t guarantee that the 
closure phase will be fit just as well; in 
fact, it may be way off. That is why the 
closure phase is the cardinal factor of 
this analysis. The goal is to be able to 

detect a sunspot’s intensity to a 
discernable degree. 
 
To demonstrate the usefulness of this 
program, here is the resulting sum-of-
squares surface for day 189: 
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Figure 6.3: 3D surface plot for day 189 showing the minimum sum-of-squares point 

 
Pinpointing at the minimum, we can 
simply read off the parameters that 
optimize the fitting. A model is 
computed at every vertex, and then, the 
sum of squares is computed. In a sense, 

the least-squares solution is found. 
Picking the optimum parameters in the 
same way, we obtain the following 
results for the closure phase for days 
190, 191, and 192: 
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Figure 6.4: Actual closure phase data and model fit with optimum parameters 
 
As shown, the models contain the 
parameters that fit the closure phase the 
best. Slight tweaking took place to 

account for outliers. To run the above 
simulations, we used the following 
parameters for each day: 

 
Table 6.2: Parameters derived from the Sum-of-Squares surfaces 

Day of 
year 

Solar radius 
(deg.) 

Sunspot 
intensity % Gradient % Limb 

brightening 
189 0.275 2.02 5 3.5 
190 0.275 1.50 5 3.5 
191 0.2752 1.36 1 3.5 
192 0.2749 1.54 0 3.5 

 
Table 6.3: Final parameters used after tweaking 

Day of 
year 

Solar radius 
(deg.) 

Sunspot 
intensity % Gradient % Limb 

brightening 
189 0.275 2.02 5 3.5 
190 0.275 1.50 5 3.5 
191 0.2752 1.36 1 3.5 
192 0.275 1.25 0 3.5 

 
It’s interesting to know what happens 
after day 192 to the sunspot’s intensity. 
Although certain difficulties with taking 
data hindered our inference capabilities, 

the data taken on day 194 showed the 
apparent trend to continue. Running the 
model on day 194 and adjusting the 
parameters empirically, 

.. 
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we observe the following closure phase fit:
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Figure 6.5: Closure phase fit for day 194 

 
Thus, for day 194, the sunspot intensity 
was around 1.15; it’s definitely less than 
1.25. This is a good sign since on the 
NoRH image on July 13th (day 194), we 

see that the sunspot still exists and it’s 
less intense than that of July 11th (day 
192). Below are the NoRH images for 
days 193 and 194, respectively: 

 

 
Figure 6.6: NoRH images of days 193 and 194 
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Now, we plot the sunspot trend observed: 
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Figure 6.7: Sunspot trend from July 8th to July 13th 

 
Data on day 193 was not collected and 
the point shown above in red is simply a 
guess of the sunspot’s intensity. Below 

are plots that display the sum-of-squares 
vs. sunspot intensity: 
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Figure 6.8: Series of plots of sum-of-squares vs. sunspot amplitude for four consecutive days at 
R = 0.275° 
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amplitude of 1.5 will give you the best 
fit, but looking at the result graphically, 
we see that the upper data is not fit that 
well, so it’s a more natural decision to fit 
the data with an intensity of 1.25 
because on average, it fits the decay of 
the closure phase data slightly better, 
which is chiefly determined by the 

sunspot’s amplitude; the smaller the 
amplitude, the sharper the decay. The 
results signify that throughout the period 
of these four days, the sunspot’s 
intensity was decreasing. The minimum 
in the above plots represent the place 
where the sum of squares is minimized, 
and thus, get a better fit. 

 
 
7  Conclusion 
 
In summary, we documented the main 
hardware involved in the design of the 
VSRT’s and showed an approach to 
analyzing data recorded from radio 
observations on the Sun. Moreover, we 
utilized the concept of least squares in 
order to infer information about the 
sunspot intensity and the solar radius by 
taking advantage of the closure phase. 
The main goal for this analysis tool is to 
be able to automatically determine the 
set of parameters {solar radius, sunspot 
intensity} that will yield the best fit. We 
were successfully able to detect the 
sunspot activity with an adequate degree 

of accuracy using the 3-element VSRT 
system. 
 
Primary focus on future work on this 
project should include covering sensitive 
parts of the VSRT hardware, since it’s 
heavily affected by rain and coming up 
with a more stable setup (maybe 
mounting the VSRT’s to the wall) to 
minimize pointing errors. Finally, more 
complicated interferometer experiments 
should be carried out; possibly by adding 
another dish. Then, we would have four 
LNB’s, six baselines, which indicate that 
there are three independent closure 
phase triangles. 
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Appendix 
 
Here is the simLimb.m Matlab code developed: 
 
function simLimb(apply_gradient, apply_brightening, plot_spot, answer, 
beta_input, F_input, input_string, spotamp_input, useManyRings, R_input) 
% Function reads an input file and runs a simulation. 
% Gradient: used to model pointing error effects on the closure phase, since 
the closure phase is 
% affected by pointing errors. 
% Limb Brightening: more sophisticated limb brighteness profile (exponential) 
% 
% SYNTAX: simLimb(apply_gradient, apply_brightening, plot_spot, 
plot_actual_data, beta_input,  
%                 F_input, input_string, spotamp_input, useManyRings, 
R_input) 
%  
% Example: simLimb(1, 1, 1, 1, 10, 3.5, '718912.rad', 1.6, 1, 0.275); 
%          simulate a gradient, a sunspot and limb brightening, 
%          read a data file, apply a 10% gradient and 3.5% limb 
%          brightening, read data from '718912.rad', set sunspot's  
%          amplitude to 1.6, use many rings for limb brightening, R = 0.275 
%  
% Author: Ted Tsiligaridis 
% Last Edited: 2007/08/2, Version: 1.6 
  
numargs = 10; 
if nargin > numargs, 
    error('Too many input arguments.'); 
elseif nargin < numargs, 
    error('Need more input arguments.'); 
end 
  
% Define global variables 
global time_sim_hr; 
global base1_sim base2_sim base3_sim closurePhase_sim; 
global base1_sim2 base2_sim2 base3_sim2 closurePhase_sim2; 
global base1_sim3 base2_sim3 base3_sim3 closurePhase_sim3; 
global time_data_hr; 
global base1_data base2_data base3_data closurePhase_data; 
global input F beta; 
global spotang spotsize spotamp spotrad; 
global rmax; 
global a1 b1 a2 b2; 
  
% Program execution starts --------------------------------------------------
----------------- 
  
index_sim = 0; % used for appending numbers in arrays 
index_data = 0; 
  
% parse input_string to get new_day 
new_day_string = [input_string(2) input_string(3) input_string(4)]; 
new_day = str2double(new_day_string); 
if isnumeric(new_day), 
    disp(['New day = ' num2str(new_day)]); 
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else 
    disp('Problem: new_day not read correctly.'); 
end 
  
% Simulation 
freq = 11.25e09 + 836e06; % 12.086 GHz observing frequency 
R = num2str(R_input); 
R = str2double(R); 
rmax = R; 
wavl = 299792458.0/freq; 
  
% self-adjusting weighting functions 
F = F_input/100.0; 
offset_1 = 0.01; offset_2 = 0.02; 
eq1 = [num2str(1+F), ' = a*exp(b*', num2str(R), ')']; 
[a1, b1] = solve(['1.00 = a*exp(b*', num2str(R - offset_1), ')'], eq1); 
a1 = max(double(real(vpa(a1)))); 
b1 = max(double(real(vpa(b1)))); 
eq2 = [num2str(1+F), ' = a*exp(-b*', num2str(R), ')']; 
[a2, b2] = solve(eq2, ['0.0001 = a*exp(-b*', num2str(R + offset_2), ')']); 
a2 = max(double(real(vpa(a2)))); 
b2 = max(double(real(vpa(b2))));     
  
% define vectors 
time_sim = 1:96; time_sim_hr = 1:96; 
az_deg_sim = 1:96; el_deg_sim = 1:96; 
base1_sim = 1:96; base2_sim = 1:96; base3_sim = 1:96; closurePhase_sim = 
1:96; 
base1_sim2 = 1:96; base2_sim2 = 1:96; base3_sim2 = 1:96; closurePhase_sim2 = 
1:96; 
base1_sim3 = 1:96; base2_sim3 = 1:96; base3_sim3 = 1:96; closurePhase_sim3 = 
1:96; 
  
% insert spot in the sun 
spotang = 180; 
spotrad = rmax*0.15; 
spotsize = rmax*0.1; 
spotamp = spotamp_input; 
  
% initialize temporary arrays 
baz = [0, 0, 0]; blen = [0, 0, 0]; belev = [0, 0, 0]; 
xx = [0, 0, 0]; yy = [0, 0, 0]; zz = [0, 0, 0]; 
bblen = [0, 0, 0]; delay = [0, 0, 0]; 
b_r = [0, 0, 0]; b_east = [0, 0, 0]; b_north = [0, 0, 0]; 
phas = [0, 0, 0]; visibility = [0, 0, 0]; 
phas2 = [0, 0, 0]; visibility2 = [0, 0, 0]; 
phas3 = [0, 0, 0]; visibility3 = [0, 0, 0]; 
  
disp('Simulation running...'); 
disp(['Angular radius of Sun = ', num2str(R)]); 
numDays = 4; 
totalTime = 24*numDays; 
for i=0:totalTime-1, 
    if mod(i, 24) == 0, 
        percent = double(i/(1.0*totalTime)*100.0); 
        disp([num2str(percent), '% complete.']); 
    end 
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    lon = toRad(-71.5); % get latitude and longitude of Haystack 
    lat = toRad(42.5); 
    ttime = double(toSec(2007, new_day, 11, 0, 0)) + i*1800.0/4.0; 
    timeStamp = toYrDay(ttime); 
    date_tuple = strread(timeStamp, '%s', 'delimiter', ':'); 
    hr = str2double(date_tuple(2)); 
     
    % compute Sun's right ascension and declination 
    [ra, dec] = get_sunra_and_dec(ttime); 
  
    % compute azimuth and elevation angles 
    ha = double(getGST(ttime) - ra + lon); 
    [az, el] = get_radec_az_and_el(ha, dec, lat); 
     
    index_sim = index_sim + 1; 
    time_sim(index_sim) = ttime;    
    az_deg_sim(index_sim) = az; 
    el_deg_sim(index_sim) = el; 
  
    % simulation hardware parameters 
    feedoffset = toRad(11.0); 
    faz = atan2(sin(feedoffset), cos(feedoffset)*cos(el)); 
    baz(0 + 1) = (az + faz + pi/2.0); 
    baz(1 + 1) = (az + faz - pi/2.0); 
    baz(2 + 1) = toRad(107.0); 
    blen(0 + 1) = 0.5*21.25*2.54/100.0; % length between two dishes 
    blen(1 + 1) = 0.5*21.25*2.54/100.0; 
    blen(2 + 1) = (9*12.0 + 7.0 + 7.0/8.0)*2.54/100.0; % distance from the 
center point of the two dishes to the third dish 
    belev(0 + 1) = 0; 
    belev(1 + 1) = 0; % lie in approximately the same plane 
    el_ang = 1 + (2*57.3)/(9*12.0 + 7.0 + 7.0/8.0); % ~2 degrees 
    elev_offset = -toRad(1)*sin(el); 
    belev(2 + 1) = toRad(-el_ang) + elev_offset; 
     
    for stat=0:2, 
        lx = blen(stat + 1)*sin(baz(stat + 1)); 
        ly = blen(stat + 1)*cos(baz(stat + 1)); 
        lz = blen(stat + 1)*sin(belev(stat + 1)); 
        xx(stat + 1) = -lx*sin(lon) - ly*cos(lon)*sin(lat) + 
lz*cos(lat)*cos(lon); 
        yy(stat + 1) = lx*cos(lon) - ly*sin(lon)*sin(lat) + 
lz*sin(lon)*cos(lat); 
        zz(stat + 1) = ly*cos(lat) + lz*sin(lat); 
    end 
  
    for base=0:2, 
        % get sx, sy, sz unit vectors in direction of the sun 
        gha = double(getGST(ttime) - ra); 
        sx = cos(dec)*cos(gha); 
        sy = -cos(dec)*sin(gha); 
        sz = sin(dec); 
        if base < 2, 
            bx = xx(base + 1 + 1) - xx(0 + 1); 
            by = yy(base + 1 + 1) - yy(0 + 1); 
            bz = zz(base + 1 + 1) - zz(0 + 1); 
        else 
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            bx = xx(2 + 1) - xx(1 + 1); 
            by = yy(2 + 1) - yy(1 + 1); 
            bz = zz(2 + 1) - zz(1 + 1); 
        end 
        if hr == 16, 
            bblen(base + 1) = sqrt(bx*bx + by*by + bz*bz); 
        end 
         
        % projected baseline components: u, v 
        b_r(base + 1) = bx*cos(gha) - by*sin(gha); 
        b_east(base + 1) = by*cos(gha) + bx*sin(gha); 
        b_north(base + 1) = bz*cos(dec) - b_r(base + 1)*sin(dec); 
        delay(base + 1) = bx*sx + by*sy + bz*sz; 
  
        % apply a brightness gradient 
        % compute Bessel function numerically: uniform disk + brightness 
gradient 
        sumr = 0.0; sumi = 0.0; r = 0; 
        if apply_gradient, 
            beta = -beta_input/100.0; 
        else 
            beta = 0.0; 
        end 
        increment = 0.00005; 
        z_start = sqrt(b_east(base + 1)*b_east(base + 1) + b_north(base + 
1)*b_north(base + 1)); 
        z = 2.0*pi*z_start/wavl; 
        while r < R, 
            xa = sqrt(R*R - r*r); 
            xb = cos(r*z*pi/180.0); 
            sumr = sumr + (xa*xb); 
            if apply_gradient, 
                xb = sin(r*z*pi/180.0); 
            else 
                xb = 0; 
            end 
            xc = beta*r/R; 
            sumi = sumi + (xa*xb*xc); 
            r = r + increment; 
        end 
        a = pi*R*R/4.0; 
        sumr = sumr*increment/a; 
        sumi = sumi*increment/a; 
         
        phas(base + 1) = toDeg(atan2(sumi, sumr)); 
        visibility(base + 1) = sqrt(sumr*sumr + sumi*sumi); 
  
        % use Matlab built-in Bessel function: uniform disk + limb 
brightening 
        if ~apply_brightening, 
            F = 0.0; 
        else 
            F = F_input/100.0; 
        end 
         
        if useManyRings == 0, 
            % disk + one outer ring 
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            y1 = 2*besselj(1, R*z*pi/180.0)/(R*z*pi/180.0); 
            y2 = F*besselj(0, R*z*pi/180.0); 
            y = (y1 + y2)/(1+F); 
        else 
            % disk + many weighted rings 
            y = applyLimb(z, offset_1, offset_2); % y = Vuniform + Vlimb 
        end 
         
        phas2(base + 1) = toDeg(atan2(imag(y), real(y))); 
        visibility2(base + 1) = abs(y); 
         
        % use Matlab built-in Bessel function and approximate gradient 
numerically 
        % uniform disk + limb brightening + linear gradient 
        r = 0; sum_g = 0.0; 
        while r < R, % 0 < r < R (in degrees) 
            xa = sqrt(R*R - r*r); 
            if apply_gradient, 
                xb = sin(r*z*pi/180.0); 
            else 
                xb = 0; 
            end 
            xc = beta*r/R; % linear in r 
            sum_g = sum_g + (xa*xb*xc); 
            r = r + increment; % increment 
        end 
        a = pi*R*R/4.0; % scale sum 
        sum_g = sum_g*increment/a; % divide by pi*R^2/4 
        v = y + sum_g; % limb + gradient 
         
        sum2 = 1; sumi = 0; 
        % insert sunspot 
        if plot_spot, 
            x = spotrad*cos(spotang*pi/180.0); 
            y = spotrad*sin(spotang*pi/180.0); 
            th = 2.0*pi*(b_east(base + 1)*(x*pi/180.0) + b_north(base + 
1)*(y*pi/180.0))/wavl; 
            a = (spotsize/rmax); 
            v = v + spotamp*a*a*cos(th); % V = Vspot + Vsun 
            sumi = spotamp*a*a*sin(th); 
            sum2 = sum2 + spotamp*a*a; 
        end 
        phas3(base + 1) = toDeg(atan2(sumi, v)); 
        visibility3(base + 1) = sqrt(v*v + sumi*sumi)/sum2; 
    end 
    base1_sim(index_sim) = visibility(0 + 1); 
    base2_sim(index_sim) = visibility(1 + 1); 
    base3_sim(index_sim) = visibility(2 + 1); 
    closurePhase_sim(index_sim) = phas(0 + 1) - phas(1 + 1) + phas(2 + 1); 
    base1_sim2(index_sim) = visibility2(0 + 1); 
    base2_sim2(index_sim) = visibility2(1 + 1); 
    base3_sim2(index_sim) = visibility2(2 + 1); 
    closurePhase_sim2(index_sim) = phas2(0 + 1) - phas2(1 + 1) + phas2(2 + 
1); 
    base1_sim3(index_sim) = visibility3(0 + 1); 
    base2_sim3(index_sim) = visibility3(1 + 1); 
    base3_sim3(index_sim) = visibility3(2 + 1); 
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    closurePhase_sim3(index_sim) = phas3(0 + 1) - phas3(1 + 1) + phas3(2 + 
1); 
end 
fprintf(1, ['100%% complete.', '\n']); 
  
% convert time vectors to hours before plotting 
start_hr = 11; 
for j=0:length(time_sim)-1, 
    hour_sim = (time_sim(j + 1) - toSec(2007, new_day, 11, 0, 0))/3600.0; 
    time_sim_hr(j + 1) = hour_sim + start_hr; 
end 
  
  
% Actual data 
input = input_string; 
time_data = []; 
time_data_hr = []; 
az_deg_data = []; 
el_deg_data = []; 
daz_deg_data = []; del_deg_data = []; 
freq_data = []; 
base1_data = []; base2_data = []; base3_data = []; closurePhase_data = []; 
time_offset = 0; 
a = 50; b = 50; c = 10; % used for scaling actual baseline data 
  
if answer == 1, 
    disp(['Reading: ', input]); 
    fid = fopen(input, 'r'); 
    validLines = 0; 
    totalLines = 0; 
    while feof(fid) == 0, 
        tline = fgetl(fid); 
        line_tuple = strread(tline, '%s'); 
        if char(line_tuple(1)) == '*', 
            continue; 
        end 
  
        if validLines == 1, 
            timestamp = char(line_tuple(1)); 
            timestamp_tuple = strread(timestamp, '%s', 'delimiter', ':'); 
            new_day = int16(str2double(char(timestamp_tuple(2)))); 
            time_offset = toSec(int32(str2double(char(timestamp_tuple(1)))), 
int32(str2double(char(timestamp_tuple(2)))), 11, 0, 0); 
        end 
  
        num = str2double(line_tuple(10)); 
        if num ~= 999, 
            validLines = validLines + 1; 
            index_data = index_data + 1; 
            stamp = line_tuple(1); 
            nexttime = getTime(stamp); 
  
            time_data(index_data) = (double(nexttime) - double(time_offset) + 
double(toSec(2007, new_day, 11, 0, 0))); 
            hour_data = double((time_data(index_data) - double(toSec(2007, 
new_day, 11, 0, 0)))/3600.0); 
            time_data_hr(index_data) = hour_data + start_hr; 
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            if validLines == 1, 
                time_data_hr(1) = min(time_data_hr); % avoid off-by-1 error 
in the very beginning 
            end 
            az_deg_data(index_data) = str2double(char(line_tuple(2))); 
            el_deg_data(index_data) = str2double(char(line_tuple(3))); 
            daz_deg_data(index_data) = str2double(char(line_tuple(4))); 
            del_deg_data(index_data) = str2double(char(line_tuple(5))); 
            freq_data(index_data) = str2double(char(line_tuple(6))); 
  
            % scale actual data 
            base1_data(index_data) = str2double(char(line_tuple(7)))*6e-
2/sqrt(a*b); % intermediate 
            base2_data(index_data) = str2double(char(line_tuple(8)))*6e-
2/sqrt(a*c); % long 
            base3_data(index_data) = str2double(char(line_tuple(9)))*6e-
2/sqrt(b*c); % short 
            closurePhase_data(index_data) = str2double(char(line_tuple(10))); 
% closure phase 
        end 
        totalLines = totalLines + 1; 
    end 
    fclose(fid); 
    fprintf(1, ['Text file successfully read. ', 'valid lines = ', 
num2str(validLines), '\n']); 
    fprintf(1, ['                             ', 'total lines = ', 
num2str(totalLines), '\n']); 
end 
  
plotGraphs(plot_spot, answer); 
  
  
% Inner functions -----------------------------------------------------------
------------------ 
  
% advanced limb brightening 
function y = applyLimb(z, offset_1, offset_2) 
    global rmax; 
    global a1 b1 a2 b2; 
     
    R = rmax; 
    dr = 0.0005; 
    r0 = R - offset_1; 
    r1 = R + offset_2; 
    sumF = 0.0; 
    for r=r0:dr:r1, 
        if r < R, 
            weight = a1*exp(b1*r); 
        else 
            weight = a2*exp(-b2*r); 
        end 
        sumF = sumF + weight*2*pi*r; 
    end 
    sumF = sumF*dr/(pi*R*R); 
    sumA = 0.0; 
    for r=r0:dr:r1, 
        if r < R, 
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            weight = a1*exp(b1*r); 
        else 
            weight = a2*exp(-b2*r); 
        end 
        sumA = sumA + weight*2*pi*r*besselj(0, toRad(R*z)); 
    end 
    sumA = sumA*dr/(pi*R*R); 
    y = (2*besselj(1, toRad(R*z))/(toRad(R*z)) + sumA)/(1 + sumF); 
    return; 
  
% input a string, output a float 
function time = getTime(timeStamp) 
    % do a delimiter read on the time stamp 
    date_tuple = strread(char(timeStamp), '%s', 'delimiter', ':'); 
    year = int32(str2double(char(date_tuple(1)))); % need to convert strings 
to doubles 
    day = int32(str2double(char(date_tuple(2)))); 
    hour = int32(str2double(char(date_tuple(3)))); 
    min = int32(str2double(char(date_tuple(4)))); 
    sec = int32(str2double(char(date_tuple(5)))); 
    time = toSec(year, day, hour, min, sec); 
    return; % time in seconds 
  
% get time in seconds since 1970 
function secs = toSec(yr, day, hr, min, sec) 
    secs = (yr - 1970)*31536000.0 + (day - 1)*86400.0 + hr*3600.0 + min*60.0 
+ sec; 
    for i=1970:yr-1, % i++, 1970 <= k < yr 
        if ((mod(i,4) == 0 && mod(i,100) ~= 0) || mod(i,400) == 0), 
            secs = secs + 86400.0; 
        end 
    end 
    if secs < 0.0, % year must be before 1970 
        secs = 0.0; 
    end 
    return; 
  
% plot baselines as a subplot 
function plotGraphs(plot_spot, answer) 
    global time_sim_hr; 
    global base1_sim base2_sim base3_sim closurePhase_sim; 
    global base1_sim2 base2_sim2 base3_sim2 closurePhase_sim2; 
    global base1_sim3 base2_sim3 base3_sim3 closurePhase_sim3; 
    global time_data_hr; 
    global base1_data base2_data base3_data closurePhase_data; 
    global input; global F beta; 
    global spotang spotsize spotamp spotrad; 
    global rmax; 
     
    figure; 
   
    % account for change in text file series of baselines: base3_data <-> 
base1_data 
    subplot(4,1,1); 
    if answer == 1, 
        scatter(time_data_hr, base1_data, 5, 'r'); % intermediate baseline 
        hold on; 
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    end 
    plot(time_sim_hr, base3_sim, 'b', time_sim_hr, base3_sim2, 'm', 
time_sim_hr, base3_sim3, 'k'); 
    axis([min(time_sim_hr), max(time_sim_hr), 0, 0.5]); 
    set(gca, 'YTick', 0:0.25:0.51); 
    set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1); 
    title('Baseline 2 (Intermediate)'); 
    ylabel('Vis. Amplitude'); 
  
    subplot(4,1,2); 
    if answer == 1, 
        scatter(time_data_hr, base2_data, 5, 'r'); % long baseline 
        hold on; 
    end 
    plot(time_sim_hr, base2_sim, 'b', time_sim_hr, base2_sim2, 'm', 
time_sim_hr, base2_sim3, 'k'); 
    axis([min(time_sim_hr), max(time_sim_hr), 0, 0.1]); 
    set(gca, 'YTick', 0:0.05:0.11); 
    set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1); 
    title('Baseline 1 (Long)'); 
    ylabel('Vis. Amplitude'); 
  
    subplot(4,1,3); 
    if answer == 1, 
        scatter(time_data_hr, base3_data, 5, 'r'); % short baseline 
        hold on; 
    end 
    plot(time_sim_hr, base1_sim, 'b', time_sim_hr, base1_sim2, 'm', 
time_sim_hr, base1_sim3, 'k'); 
    if plot_spot, 
        sunspot_string = ['brightening + gradient + sunspot: angle = ', 
num2str(spotang), ', rad = ', num2str(spotrad/rmax), 'R, size = ', 
num2str(spotsize/rmax), 'R, amp = ', num2str(spotamp)]; 
    else 
        sunspot_string = 'brightening + gradient (No sunspot)'; 
    end 
    if answer, 
        h = legend(['data: ', input], ['gradient: ', num2str(beta*100.0), 
'%'], ['brightening: ', num2str(F*100), '%'], sunspot_string, 4); 
    else 
        h = legend(['gradient: ', num2str(beta*100.0), '%'], ['brightening: 
', num2str(F*100), '%'], sunspot_string, 3); 
    end 
    set(h,'Interpreter','none'); 
    axis([min(time_sim_hr), max(time_sim_hr), 0, 1.1]); 
    set(gca, 'YTick', 0:0.2:1.1); 
    set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1); 
    title('Baseline 0 (Short)'); 
    ylabel('Vis. Amplitude'); 
     
    subplot(4,1,4); 
    if answer == 1, 
        scatter(time_data_hr, closurePhase_data, 5, 'r'); % plot actual data 
        hold on; 
    end 
    plot(time_sim_hr, closurePhase_sim, 'b', time_sim_hr, closurePhase_sim2, 
'm', time_sim_hr, closurePhase_sim3, 'k'); 
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    axis([min(time_sim_hr), max(time_sim_hr), -200, 200]); 
    set(gca, 'YTick', -200:50:201); 
    set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1); 
    title('Closure Phase'); 
    xlabel('UT Time (hr)'); % time scale is the same for all plots 
    ylabel('Closure Phase (deg)'); 
  
    return; 
     
% calculate Sun ra and dec (approximate) 
% see Astronomical Almanac page C24 Sun 1999 
function [ra, dec] = get_sunra_and_dec(time) % input: float time in seconds 
    n = -365.5 + double(time - toSec(1999, 1, 0, 0, 0)) / 86400.0; 
    g = (357.528 + 0.9856003 * n) * pi / 180.0; 
    lon = (280.460 + 0.9856474 * n + 1.915 * sin(g) + 0.02 * sin(2 * g)) * pi 
/ 180.0; 
    ecl = (23.439 - 0.0000004 * n) * pi / 180.0; 
    ra = double(atan2(sin(lon) * cos(ecl), cos(lon))); % returns atan(y/x) in 
radians (between -pi and pi) 
    dec = double(asin(sin(lon) * sin(ecl))); 
    return; % return a list of the two parameters 
  
% convert from sky to antenna coords (azel mount) 
% input: has,decs,lat 
%   output: azs = azimuth of source 
%           elev = elevation of source 
function [azs, elev] = get_radec_az_and_el(has, decs, lat) 
    p = sin(decs); 
    w = sin(has) * cos(decs); 
    r = cos(has) * cos(decs); 
    zen = r * cos(lat) + p * sin(lat); 
    north = -r * sin(lat) + p * cos(lat); 
    elev = atan2(zen, sqrt(north * north + w * w)); 
    azs = atan2(-w, north); 
    if azs < 0, 
        azs = azs + pi * 2.0; 
    end 
    return; 
  
% get Greenwich sidereal time, input: time in seconds since 1970 
function d = getGST(ttime) 
    secs = (1999-1970)*31536000.0 + 17.0*3600.0 + 16.0*60.0 + 20.1948; 
    for i=1970:1999, 
        if ((mod(i,4) == 0 && mod(i,100) ~= 0) || mod(i,400) == 0), 
            secs = secs + 86400.0; 
        end 
    end 
    % 17 16 20.1948 UT at 0hr newyear 1999 
    remainder = rem((ttime-secs),86164.09053); 
    decimal = remainder/86164.09053; % decimal part of division 
    d = decimal*2.0*pi; 
    return; 
  
% convert seconds to Yr/Day/Hr/Min/Sec 
function date = toYrDay(secs) 
    i = 1970; % initialize 'i' before entering the while loop 
    day = floor(secs/86400.0); 
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    sec = secs - day*86400.0; 
    while day > 365, 
        i = i + 1; 
        temp = ((mod(i,4) == 0 & mod(i,100) ~= 0) | mod(i,400) == 0); % 
boolean 
        if temp == 1, days = 366; 
        else days = 365; end       
        day = day - days; 
    end 
    phr = int64(sec/3600.0); % casting issue with int64(), need to convert to 
double 
    sec = sec - double(phr)*3600; 
    pmin = int64(sec/60.0); 
    psec = sec - double(pmin)*60; 
    pyear = i; 
    day = day + 1; 
    pday = day; 
    if day == 366, % fix problem with day 366 
        temp = ((mod(i,4) == 0 & mod(i,100) ~= 0) | mod(i,400) == 0); % 
boolean 
        if temp == 1, days = 366; 
        else days = 365; end 
        if days == 365, 
            day = day - 365; 
            pday = day; 
            pyear = i+1; 
        end 
    end 
    % concatenate strings together to return timestamp as a string 
    date = [num2str(pyear), ':', num2str(int64(pday)), ':', 
num2str(int64(phr)), ':', num2str(int64(pmin)), ':', num2str(int64(psec))]; 
    return; 
     
% convert radians to degrees 
function conversion1 = toDeg(radians) 
    conversion1 = radians*180.0/pi; 
    return; 
  
% convert degrees to radians 
function conversion2 = toRad(degrees) 
    conversion2 = degrees*pi/180.0; 
    return; 
 
 
 
Below is the Python program simGradient.py developed: 
 
# Script reads an input file and runs a simulation. 
# Brightness Gradient: used to model pointing error effects on the closure phase, since the closure phase is 
# affected by poiting errors.(Old limb brightening profile) 
# 
# Author: Ted Tsiligaridis 
# Last Edited: 2007/07/06, Version: 1.1 
 
from pylab import *; # import everything from pylab 
from math import *;  # import math 
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from Tkinter import *; # for canvas 
from scipy.special import *; # for Bessel functions 
 
# input a string, output a float 
def getTime(timeStamp): 
    # do a delimiter read on the time stamp 
    timevec = timeStamp.split(':'); 
    year = float(timevec[0]); # need to convert string to float 
    day = float(timevec[1]); 
    hour = float(timevec[2]); 
    min = float(timevec[3]); 
    sec = float(timevec[4]); 
    time = toSec(year, day, hour, min, sec); 
    return time; # time in seconds 
 
# get time in seconds since 1970 
def toSec(yr, day, hr, min, sec): 
    secs = 0.0; 
    secs = (yr - 1970)*31536000.0 + (day - 1)*86400.0 + hr*3600.0 + min*60.0 + sec; 
    for i in range(1970, int(yr)): # i++, 1970 <= k < yr 
        if ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0): 
            secs += 86400.0; 
    if secs < 0.0: # year must be before 1970 
        secs = 0.0; 
    return secs; 
 
# input a line as a string, output a tuple of the line 
def getTuple(line): 
    # do a delimiter read on this line 
    return line.split(); # use for any amount of spaces 
 
# turn list into a string 
def getString(list): 
    return ":".join(list); # put ":" in between strings 
 
# interactive menu 
def menu(): 
    ans = 0; 
    while ans != 3: 
        print "---- Plot Menu ----" 
        print "1. Plot Results"; 
        print "2. Show Sun"; 
        print "3. Exit\n"; 
        ans = int(raw_input("Enter choice: ")); 
        checkAnswer(ans); 
    # out of the loop 
    print "Successfully exited menu.";  
 
# check the user's response 
def checkAnswer(ans): 
    if ans==1: 
        plotGraphs(); 
    elif ans==2: 
        showSun(); 
    elif ans==3: 
        print; # do nothing (print blank line) 



 39

    else: # default 
        print "Please pick one of the choices."; 
 
# plot baselines as a subplot 
def plotGraphs(): 
    figure(1); 
   
    # account for change in text file series of baselines: base3_data <-> base1_data 
    subplot(411); 
    scatter(time_data_hr, base1_data, s=5, c='r', edgecolor='r'); # intermediate 
    plot(time_sim_hr, base3_sim, 'b', time_sim_hr, base3_sim2, 'm', time_sim_hr, base3_sim3, 'k'); 
    axis([min(time_sim_hr), max(time_sim_hr), 0, 0.5]); 
    title('Baseline 2 (Intermediate)'); 
    yticks(arange(0, 0.51, 0.25)); 
    xticks(arange(min(time_sim_hr), max(time_sim_hr)+1)); # label x-axis using tick marks from 11 to 23 
    ylabel('Vis. Amplitude'); 
 
    subplot(412);     
    scatter(time_data_hr, base2_data, s=5, c='r', edgecolor='r'); # long 
    plot(time_sim_hr, base2_sim, 'b', time_sim_hr, base2_sim2, 'm', time_sim_hr, base2_sim3, 'k'); 
    axis([min(time_sim_hr), max(time_sim_hr), 0, 0.1]); 
    title('Baseline 1 (Long)'); 
    yticks(arange(0, 0.11, 0.05)); 
    xticks(arange(min(time_sim_hr), max(time_sim_hr)+1)); 
    ylabel('Vis. Amplitude'); 
 
    subplot(413); 
    scatter(time_data_hr, base3_data, s=5, c='r', edgecolor='r'); # short 
    plot(time_sim_hr, base1_sim, 'b', time_sim_hr, base1_sim2, 'm', time_sim_hr, base1_sim3, 'k'); 
    if plot_spot: 
        sunspot_string = 'brightening + gradient + sunspot: angle = ' + str(spotang) + ', rad = ' + str(spotrad/rmax) + 'R, 
size = ' + str(spotsize/rmax) + 'R, amp = ' + str(spotamp); 
    else: 
        sunspot_string = 'brightening + gradient (No sunspot)'; 
    h = legend(('gradient: ' + str(beta*100.0) + '%','brightening: ' + str(F*100) + '%',sunspot_string), loc=0, 
shadow=1); 
    axis([min(time_sim_hr), max(time_sim_hr), 0, 1.1]); 
    title('Baseline 0 (Short)'); 
    yticks(arange(0, 1.1, 0.2)); 
    xticks(arange(min(time_sim_hr), max(time_sim_hr)+1)); 
    ylabel('Vis. Amplitude'); 
     
    subplot(414); 
    scatter(time_data_hr, closurePhase_data, s=5, c='r', edgecolor='r'); # plot actual data 
    plot(time_sim_hr, closurePhase_sim, 'b', time_sim_hr, closurePhase_sim2, 'm', time_sim_hr, closurePhase_sim3, 
'k'); 
    axis([min(time_sim_hr), max(time_sim_hr), -200, 200]); 
    yticks(arange(-200, 201, 50)); 
    title('Closure Phase'); 
    xlabel('UT Time (hr)'); 
    xticks(arange(min(time_sim_hr), max(time_sim_hr)+1)); 
    ylabel('Closure Phase (deg)'); 
    text(11.5, 100, 'R = ' + str(R), color='k'); 
 
    show(); 
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# show the sun spot on the sun graphically 
def showSun(): 
    canvas = Canvas(width=400, height=400, bg='black'); 
    canvas.pack(expand='yes', fill='both'); 
    main = canvas.create_oval(0, 0, 400, 400, width=1, tags='Default Sun', fill='orange'); 
    v_line = canvas.create_line(200, 0, 200, 400, fill='white'); 
    h_line = canvas.create_line(0, 200, 400, 200, fill='white'); 
     
    # spot's center coordinates 
    x = spotrad*cos(spotang*pi/180.0); 
    y = spotrad*sin(spotang*pi/180.0); 
    center_x = int(200*(1.0-x/rmax)); 
    center_y = int(200*(1.0+y/rmax)); 
     
    # Assume spotamp = 1 (intensity) 
    spot_size_pix = int((spotsize/rmax)*200); 
    x0 = center_x - spot_size_pix; 
    y0 = center_y - spot_size_pix; 
    x1 = center_x + spot_size_pix; 
    y1 = center_y + spot_size_pix; 
    spot = canvas.create_oval(x0, y0, x1, y1, width=1, tags='Sun spot', fill='red'); 
 
    name = canvas.create_text(200, 50, text='Sun'); 
    if apply_gradient: 
        gradient_text = canvas.create_text(200, 40, text=str(beta*100.0) + '% brightness gradient'); 
    if apply_brightening: 
        brightening_text = canvas.create_text(200, 30, text=str(F*100.0) + '% limb brightening'); 
    angular_radius_text = canvas.create_text(30, 10, text='R = ' + str(R), fill='#fff'); 
    mainloop(); 
     
# calculate Sun ra and dec (approximate) 
# see Astronomical Almanac page C24 Sun 1999 
def get_sunra_and_dec(time): # input: float time in seconds 
    n = -365.5 + (time - toSec(1999, 1, 0, 0, 0)) / 86400.0; 
    g = (357.528 + 0.9856003 * n) * pi / 180.0; 
    lon = (280.460 + 0.9856474 * n + 1.915 * sin(g) + 0.02 * sin(2 * g)) * pi / 180.0; 
    ecl = (23.439 - 0.0000004 * n) * pi / 180.0; 
    ra = atan2(sin(lon) * cos(ecl), cos(lon)); # returns atan(y/x) in radians (between -pi and pi) 
    dec = asin(sin(lon) * sin(ecl)); 
    return [ra, dec]; # return a list of the two parameters 
 
# convert from sky to antenna coords (azel mount) 
# input: has,decs,lat 
#   output: azs = azimuth of source 
#           elev = elevation of source 
def get_radec_az_and_el(has, decs, lat): 
    p = sin(decs); 
    w = sin(has) * cos(decs); 
    r = cos(has) * cos(decs); 
    zen = r * cos(lat) + p * sin(lat); 
    north = -r * sin(lat) + p * cos(lat); 
    elev = atan2(zen, sqrt(north * north + w * w)); 
    azs = atan2(-w, north); 
    if azs < 0: 
        azs = azs + pi * 2.0; 
    return [azs, elev]; 
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# get Greenwich sidereal time, input: time in seconds since 1970 
def getGST(ttime): 
    secs = (1999-1970)*31536000.0 + 17.0*3600.0 + 16.0*60.0 + 20.1948; 
    for i in range(1970, 1999): 
        if ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0): 
            secs += 86400.0; 
    # 17 16 20.1948 UT at 0hr newyear 1999 
    [decimal, integer] = modf((ttime-secs)/86164.09053); 
    return (decimal * 2.0*pi); 
 
# convert seconds to Yr/Day/Hr/Min/Sec 
def toYrDay(secs): 
    i = 1970; # initialize 'i' before entering the while loop 
    day = floor(secs/86400.0); 
    sec = secs - day*86400.0; 
    while day > 365: 
        i += 1; 
        temp = ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0); # boolean 
        if temp == 1: days = 366; 
        else: days = 365;       
        day -= days; 
    phr = int(sec/3600.0); 
    sec -= phr*3600.0; 
    pmin = int(sec/60.0); 
    psec = sec - pmin*60; 
    pyear = i; 
    day += 1; 
    pday = day; 
    if day == 366: # fix problem with day 366 
        temp = ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0); # boolean 
        if temp == 1: days = 366; 
        else: days = 365; 
        if days == 365: 
            day -= 365; 
            pday = day; 
            pyear = i+1; 
    return getString([str(pyear), str(int(pday)), str(int(phr)), str(int(pmin)), str(int(psec))]); # return timestamp as a 
string 
 
# convert radians to degrees 
def toDeg(radians): 
    rad_to_deg = 180.0/pi; 
    return radians*rad_to_deg; 
 
# convert degrees to radians 
def toRad(degrees): 
    deg_to_rad = pi/180.0; 
    return degrees*deg_to_rad; 
 
# Program execution starts ------------------------------------------------------------------- 
 
# Actual data 
 
#input = raw_input("Enter input filename: "); # allow user to enter filename 
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input = '718614.rad'; print "Reading: " + input; 
file = open(input, 'r'); # open for read 
 
# read first two lines 
firstline = file.readline();  # read first line 
secondline = file.readline(); # ignore second line 
 
value = firstline.split(' '); # delimiter: space; tuple (ordered list) 
print value[1] + ": Latitude = " + value[4] + ", Longitude West = " + value[8]; 
 
allLines = file.readlines(); 
print "Number of samples = " + str(len(allLines)); # length of file 
print "Reading file..."; 
 
# define vectors 
timeStamp_data = []; # holds Strings 
time_data = []; # holds computed time in seconds 
time_data_hr = []; 
az_deg_data = []; # holds azimuth angle as a float 
el_deg_data = []; # holds elevation angle as a float 
daz_deg_data = []; 
del_deg_data = []; 
freq_data = []; 
base1_data = []; 
base2_data = []; 
base3_data = []; 
closurePhase_data = []; 
a = 50; b = 50; c = 10; # used for scaling actual baseline data 
 
thirdline = getTuple(allLines[0]); # read first line of timestamped lines 
time_stmp = thirdline[0]; # string 
time_tuple = time_stmp.split(':'); 
new_day = int(time_tuple[1]); 
time_offset = toSec(int(time_tuple[0]), int(time_tuple[1]), 11, 0, 0); 
 
# loop to read every line of the file 
for i in range(len(allLines)): # i = index of sample 
    nextline = getTuple(allLines[i]); # break down line 
    if nextline[0] == '*': # ignore lines which start with a star 
        continue; 
    # get data points and add values in vectors(lists) using append 
    if int(nextline[9]) != 999: # ignore line if closure phase = 999 
        stamp = nextline[0]; 
        timeStamp_data.append(stamp); # time stamp vector 
        nexttime = getTime(stamp); 
        time_data.append(nexttime - time_offset + toSec(2007, new_day, 11, 0, 0)); # account for the starting time of 
the simulation 
        az_deg_data.append(float(nextline[1])); 
        el_deg_data.append(float(nextline[2])); 
        daz_deg_data.append(float(nextline[3])); 
        del_deg_data.append(float(nextline[4])); 
        freq_data.append(float(nextline[5])); 
         
        # scale actual data 
        base1_data.append(float(nextline[6])*6e-2/sqrt(a*b)); # intermediate 
        base2_data.append(float(nextline[7])*6e-2/sqrt(a*c)); # long 
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        base3_data.append(float(nextline[8])*6e-2/sqrt(b*c)); # short 
        closurePhase_data.append(float(nextline[9])); # closure phase 
 
# Close file 
file.close(); 
print "Text file successfully read.\n"; 
 
 
# Simulation 
freq = 11.25e09 + 836e06; 
R = raw_input("Enter angular radius of the Sun: "); 
rmax = R = float(R); # in degrees 
wavl = 299792458.0/freq; # meters 
 
# define vectors 
time_sim = []; # holds computed time in seconds 
time_sim_hr = []; 
az_deg_sim = []; 
el_deg_sim = []; 
base1_sim = []; base2_sim = []; base3_sim = []; closurePhase_sim = []; 
base1_sim2 = []; base2_sim2 = []; base3_sim2 = []; closurePhase_sim2 = []; 
base1_sim3 = []; base2_sim3 = []; base3_sim3 = []; closurePhase_sim3 = []; 
 
# insert spot in the sun 
spotang = 0; 
spotrad = rmax*0.2; 
spotsize = rmax*0.1; 
spotamp = 1; 
 
# initialize temporary arrays 
baz = [0, 0, 0]; blen = [0, 0, 0]; belev = [0, 0, 0]; 
xx = [0, 0, 0]; yy = [0, 0, 0]; zz = [0, 0, 0]; 
bblen = [0, 0, 0]; delay = [0, 0, 0]; 
b_r = [0, 0, 0]; b_east = [0, 0, 0]; b_north = [0, 0, 0]; 
crr = [0, 0, 0]; phas = [0, 0, 0]; visibility = [0, 0, 0]; # used in plotting 
crr2 = [0, 0, 0]; phas2 = [0, 0, 0]; visibility2 = [0, 0, 0]; 
crr3 = [0, 0, 0]; phas3 = [0, 0, 0]; visibility3 = [0, 0, 0]; 
 
# simulation loop 
print "Simulation running..."; 
print "Angular radius of Sun = " + str(R); # display R 
numDays = 4; 
totalTime = 24*numDays; 
for i in range(totalTime): # time loop 
    if i % 24 == 0: 
        percent = int(i/float(totalTime)*100.0); 
        print str(percent) + "% complete."; 
    lon = toRad(-71.5); # get latitude and longitude of Haystack 
    lat = toRad(42.5); 
    hgt = 0.0; 
    ttime = toSec(2007, new_day, 11, 0, 0) + i*1800.0/4.0; 
    timeStamp = toYrDay(ttime); 
    delim = timeStamp.split(':'); 
    hr = delim[2]; 
     
    # compute Sun right ascension and declination 
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    [ra, dec] = get_sunra_and_dec(ttime); # output: radians 
 
    # compute azimuth and elevation angles 
    ha = getGST(ttime) - ra + lon; # radians 
    [az, el] = get_radec_az_and_el(ha, dec, lat); # output: radians 
     
    time_sim.append(ttime); # record time 
    az_deg_sim.append(az); 
    el_deg_sim.append(el); 
    rap = toRad(286.11); # radians 
    decp = toRad(63.85); 
    x = cos(decp)*cos(rap - ra); 
    y = cos(decp)*sin(rap - ra); 
    z = sin(decp); 
    tilt = atan2(y, z*cos(dec)); # PA of sun's rotation axis relation "up" of the disk 
 
    # simulation parameters 
    feedoffset = toRad(11.0); 
    faz = atan2(sin(feedoffset), cos(feedoffset)*cos(el)); 
    baz[0] = (az + faz + pi/2.0); # azimuth angle 
    baz[1] = (az + faz - pi/2.0); 
    baz[2] = toRad(107.0); # radians 
    blen[0] = 0.5*21.25*2.54/100.0; # length between 
    blen[1] = 0.5*21.25*2.54/100.0; 
    blen[2] = (9*12.0 + 7.0 + 7.0/8.0)*2.54/100.0; # 9 ft and 7+7/8 inches --> convert to meters (in. -> m.) 
    belev[0] = 0; 
    belev[1] = 0; # lie in approximately the same plane 
    el_ang = 1 + (2*57.3)/(9*12.0 + 7.0 + 7.0/8.0); # ~2 degrees 
    elev_offset = -toRad(1)*sin(el); 
    belev[2] = toRad(-el_ang) + elev_offset; 
     
    for stat in range(3): 
        lx = blen[stat]*sin(baz[stat]); # local x-y-z 
        ly = blen[stat]*cos(baz[stat]); 
        lz = blen[stat]*sin(belev[stat]); 
        x = -lx*sin(lon) - ly*cos(lon)*sin(lat) + lz*cos(lat)*cos(lon); 
        y = lx*cos(lon) - ly*sin(lon)*sin(lat) + lz*sin(lon)*cos(lat); 
        z = ly*cos(lat) + lz*sin(lat); 
        xx[stat] = x; # store coordinates 
        yy[stat] = y; 
        zz[stat] = z; 
 
    for base in range(3): 
        # get sx, sy, sz unit vectors in direction of the sun 
        gha = getGST(ttime) - ra; # Greenwich hour angle 
        sx = cos(dec)*cos(gha); 
        sy = -cos(dec)*sin(gha); 
        sz = sin(dec); 
        if base < 2: 
            bx = xx[base + 1] - xx[0]; 
            by = yy[base + 1] - yy[0]; 
            bz = zz[base + 1] - zz[0]; 
        else: 
            bx = xx[2] - xx[1]; 
            by = yy[2] - yy[1]; 
            bz = zz[2] - zz[1]; 
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        if hr == 16: 
            bblen[base] = sqrt(bx*bx + by*by + bz*bz); 
 
        # projected baselines: u, v 
        b_r[base] = bx*cos(gha) - by*sin(gha); 
        b_east[base] = by*cos(gha) + bx*sin(gha); # u 
        b_north[base] = bz*cos(dec) - b_r[base]*sin(dec); # v 
        delay[base] = bx*sx + by*sy + bz*sz; 
 
        # apply a brightness gradient 
        apply_gradient = 1; # boolean to control application of gradient 
 
        # compute Bessel function numerically: uniform disk + linear brigtness gradient 
        # sun with gradient from antenna mispointing: single integral 
        sumr = 0.0; sumi = 0.0; r = 0; 
        #beta = -(0.203971 + 0.239426)/2; % determine this factor to get the correct beamwidth at half power 
        if apply_gradient: 
            beta = -0.1; 
        else: 
            beta = 0.0; 
        increment = 0.00005; 
        z_start = sqrt(b_east[base]*b_east[base] + b_north[base]*b_north[base]); 
        z = 2.0*pi*z_start/wavl; # depends on the angles: ra, dec, and ttime 
        while r < R: # 0 < r < R (in degrees) 
            xa = sqrt(R*R - r*r); 
            xb = cos(r*z*pi/180.0); 
            sumr = sumr + (xa*xb); 
            if apply_gradient: 
                xb = sin(r*z*pi/180.0); 
            else: 
                xb = 0; 
            xc = beta*r/R; 
            sumi = sumi + (xa*xb*xc); 
            r = r + increment; # increment 
         
        # scale sum 
        a = pi*R*R/4.0; 
        sumr = sumr*increment/a; # divide by pi*R^2/4 
        sumi = sumi*increment/a; 
         
        crr[base] = sqrt(sumr*sumr + sumi*sumi); 
        phas[base] = toDeg(atan2(sumi, sumr)); 
        visibility[base] = crr[base]; 
 
        # use Python built-in Bessel function: uniform disk + limb brightening 
        apply_brightening = 1; 
        if apply_brightening == 0: 
            F = 0.0; 
        else: 
            F = 0.035; # fraction of the Sun's radio output in the enhanced brightness of the limb 
        y1 = 2*jn(1, R*z*pi/180.0)/(R*z*pi/180.0); # uniform disk 
        y2 = F*jn(0, R*z*pi/180.0); # limb brightening 
        y = (y1 + y2)/(1 + F); 
        crr2[base] = abs(y); 
        phas2[base] = toDeg(atan2(imag(y), real(y))); 
        visibility2[base] = crr2[base]; 
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        # approximate gradient numerically and use previous result 
        # uniform disk + limb brightening + linear gradient 
        r = 0; sum_g = 0.0; 
        while r < R: # 0 < r < R (in degrees) 
            xa = sqrt(R*R - r*r); 
            if apply_gradient: 
                xb = sin(r*z*pi/180.0); 
            else: 
                xb = 0; 
            xc = beta*r/R; 
            sum_g = sum_g + (xa*xb*xc); 
            r = r + increment; # increment 
        a = pi*R*R/4.0; # scale sum 
        sum_g = sum_g*increment/a; # divide by pi*R^2/4 
         
        v = y + sum_g; # limb + gradient 
         
        sum2 = 1; 
        sumi = 0; 
        # sun spot 
        plot_spot = 1; 
        if plot_spot: 
            x = spotrad*cos(spotang*pi/180.0); 
            y = spotrad*sin(spotang*pi/180.0); 
            th = 2.0*pi*(b_east[base]*(x*pi/180.0) + b_north[base]*(y*pi/180.0))/wavl; 
            a = (spotsize/rmax); # a^2: fraction of flux in spot 
            v = v + spotamp*a*a*cos(th); # use superposition to add the sums, V = Vspot + Vsun 
            sumi = spotamp*a*a*sin(th); 
            sum2 = sum2 + spotamp*a*a; # sum used for normalizing 
              
        crr3[base] = sqrt(v*v + sumi*sumi)/sum2; 
        phas3[base] = toDeg(atan2(sumi, v)); 
        visibility3[base] = crr3[base]; 
         
    # outside of the 'base' loop 
    base1_sim.append(visibility[0]); 
    base2_sim.append(visibility[1]); 
    base3_sim.append(visibility[2]); 
    closurePhase_sim.append(phas[0] - phas[1] + phas[2]); 
    base1_sim2.append(visibility2[0]); 
    base2_sim2.append(visibility2[1]); 
    base3_sim2.append(visibility2[2]); 
    closurePhase_sim2.append(phas2[0] - phas2[1] + phas2[2]); 
    base1_sim3.append(visibility3[0]); 
    base2_sim3.append(visibility3[1]); 
    base3_sim3.append(visibility3[2]); 
    closurePhase_sim3.append(phas3[0] - phas3[1] + phas3[2]); 
 
print "100% complete.\n"; 
 
# convert time vectors to hours before plotting 
start_hr = 11; 
for j in range(len(time_sim)): # rescale time_sim vector 
    hour_sim = (time_sim[j] - toSec(2007, new_day, 11, 0, 0))/3600.0; # account for sim. start time 
    time_sim_hr.append(hour_sim + start_hr); # start at 11 hours 
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for k in range(len(time_data)): # rescale time_data vector 
    hour_data = (time_data[k] - toSec(2007, new_day, 11, 0, 0))/3600.0; 
    time_data_hr.append(hour_data + start_hr); 
 
# interactive menu 
menu(); 
 




