
 1

Development of a solar imaging array of Very Small Radio Telescopes

Ted Tsiligaridis
University of Washington, Seattle

Alan E. E. Rogers
MIT Haystack Observatory

ABSTRACT

A 3-element interferometer built using very small radio telescopes (VSRT’s)
was used for observing the Sun at a frequency band of 35 MHz wide centered at
12.086 GHz daily. The signals from the LNBF’s are processed with a USB 2.0
video grabber and other inexpensive consumer electronics. The baselines used
were based on a reference between the two adjacent dishes and thus, the
baselines of the first two dishes are the same; 0.2699 meters, and the distance
from that center point to the third dish is 2.9464 meters. Data from the Sun was
collected over a two month period and software was used to calculate the fringe
visibility amplitudes and closure phase. Modeling programs were developed to
imitate the Sun’s chromospheric behavior and a comparison of the closure phase
between the VSRT data and the model’s curves was achieved via least-squares
analysis and construction of surface plots to display the sensitivity of the model
as different parameters varied, which would yield solutions to the least squares
problem. Various approaches were taken to examine the sunspot activity. The
software was developed in two languages; Matlab and Python, and the
motivation for using Python was to make the software system accessible to
community colleges and introduce radio interferometry, since it’s freely
downloadable. The cardinal factors that contribute to the visibility of the model
include the uniform Sun component, a linear brightness gradient applied to
simulate dish mispointing, limb brightening and a changeable sunspot of varying
intensity. We found that the more sophisticated limb brightening (adding many
rings) tended to fit the actual data a lot better than the previous limb brightening
profile did (only one outer ring). Although dish mispointing made it difficult to
infer information about the Sun at times and the sun was not showing much
activity during the summer, we were not only successfully able to detect sunspot
activity using the 3-element VSRT system, but also observed a decaying trend
of the sunspot’s intensity over a period of six days. The hardware of the 3-
element VSRT system was also documented in detail.

1 Introduction

The purpose of this paper is to describe
the VSRT hardware system and explore
the ways in which the VSRT’s can be
used for solar research. They’re still
being developed and it’s interesting to

see what can be achieved with such
small dishes and a smart 3-element
interferometer setup. The closure phase
was observed and deviations from ideal
conditions were explained.

hnj
Text Box
VSRT Memo #024

 2

In the following, we give an introduction
on solar physics, then describe the
VSRT observing hardware system, give
a description of the concepts used for

modeling the Sun’s radio image,
describe the software developed and the
tools used to analyze the data collected.
Finally, we discuss the results.

2 Solar Physics Background

2.1 General Physics of the Sun

The Sun can be assumed to give out
radiation in three main parts; the quiet
sun component (always present), the
slowly varying component and the active
sun component (caused by sunspots,
flares). The quite sun component arises
from thermal emission from the hot
ionized gas. The effect of all elements
other than hydrogen on the mean degree
of ionization is small. These effects can
be neglected and the solar atmosphere is
regarded as a fully ionized hydrogen gas.

To understand from which part of the
Sun’s atmosphere this emission arises,
one needs to consider the main opacity
source at radio wavelengths. (The
opacity is the measure of how much a
wave gets absorbed as it travels through
a medium.) The main source of opacity
in the Sun’s atmosphere at radio
wavelengths is electrons. The electron
density in the chromosphere is
represented by an exponential
distribution, as suggested by Cillié and
Menzel (6), and depends on the height
above the photosphere. (The larger the
height, the less the intensity of the
central beam.) Most of the emission
comes from the region where the
opacity, τ is near 1, since the higher
optical depth regions cannot be
penetrated and the low optical depth
regions do not produce enough emission.
At a frequency of 1.4 GHz (λ = 21 cm),
the emission originates from the top of
the chromosphere and is seen as a

100,000 °K blackbody. In physics, a
blackbody is an object that absorbs all
EM radiation falling into it. In other
words, the amount of wavelength of EM
radiation it emits is directly proportional
to its temperature. At longer
wavelengths, the emission arises from
the corona and is a 2 million °K
blackbody. This also means that the size
of the sun measured at the different
frequencies varies. The lower the
frequency, the larger the radius of the
sun appears.

The other two components are related to
sunspots. The slowly varying component
is also thermal in origin and arises from
the region above the sunspots where the
electron density is higher. The
blackbody temperature of these regions
can be as high as 2 million °K. Thus, the
regions above the sunspots can
contribute more radio emission than the
total area without sunspots and increase
the total radio flux relative to the quite
sun. The Sun acts like an extended
source and thus will be resolved on the
longer baselines. The Sun’s atmosphere
consists of the photosphere, the
chromosphere and the corona.
Chromospheric frequencies are referred
to those above 10 GHz, as the corona is
practically transparent. At
chromospheric heights, the temperature
distribution is of the order 104 °K.

 3

The problem of the transfer of radiation
in an ionized gas has been discussed by
Smerd and Westfold (7). Considering
radiation only in a frequency interval,
changes in the intensity of that radiation
along a path, due to emission and
absorption in an elementary cylinder of
the medium of refractive index μ, are
related by the equation of transfer. A
solution is found under conditions of
thermodynamic equilibrium, using the
Rayleigh-Jeans radiation formula since
we’re concerned with radio frequencies,
and finally assuming a uniform
temperature region. The resulting

equation indicates that the emerging
intensity is directly related to 1- e-τ. The
distribution of electron velocities in the
solar atmosphere is assumed to be
Maxwellian and brought about by
collisions. From the discussion of
transfer of RF radiation in the solar
atmosphere, to evaluate the intensity of
radiation emerging from the solar
atmosphere, we require the ray
trajectories, the optical depth (opacity)
of the medium along any trajectory and
the temperature distribution in the solar
atmosphere.

2.2 Ray Trajectories

Just like Smerd (4) has analyzed in great
detail, to examine ray trajectories, one
must consider the paths through the solar
atmosphere of those RF rays which can
be received at the earth. The refractive
index μ of an ionized medium decreases
with increasing electron density. As a
result, a ray passing through the solar
atmosphere experiences continuous
bending by refraction. If the propagation
of radiant energy is in the direction of
decreasing μ (towards the sun), the

bending will be away from the normal to
a sphere of constant μ. A point is
reached where the direction of
propagation is tangential to such as
sphere after which propagation must be
in the direction of increasing μ. The
point where the direction of propagation
changes from that of decreasing μ to that
of increasing μ is the turning point. To
aid visualization, trajectories at a
frequency which can penetrate into the
chromosphere are sketched:

Figure 2.2.1: Ray trajectories at an “intermediate” frequency (after Smerd 1950).

C.-OfltONA

! ~= ~Go,l'OINTS

I

, ,

,
/

/
/

-----'-----,;

 4

After defining the difference in optical
depth of two points on a trajectory as the
optical thickness between the two points
and taking the absorption coefficient and
the refractive index from the Lorentz
theory, mathematical descriptions of the
optical thickness τ1,2(d) have been
provided by Smerd. The solution of the
equation of transfer, along with the
physical properties of the solar
atmosphere, the ray trajectories and the
optical depth, enable us to discover the
intensity of RF rays emerging from the
solar atmosphere. In fact, at a given
frequency, rays near the center penetrate
deeper into the solar atmosphere than
those near the limb, and for a given ray
position, a higher frequency penetrates
more deeply than a lower one.

According to Smerd’s analysis on ray
trajectories, it is possible to express the
emergent intensity in terms of
temperature. After sketching trajectories
at a frequency which can penetrate
through into the chromosphere (figure
2.2.1), he found that as the distance d, of
the trajectory from the center of the disk
increases, the optical thickness τc(d) and
the effective temperature Te(d) tend to
increase due to the lengthening of the
path between the same two heights in the
atmosphere and to decrease due to the
increasing height of the turning point.
Since we’re observing at a frequency of
12 GHz (λ = 2.5 cm), according to
Smerd, we mostly have a uniform
effective temperature as we range across
the distance from the center of the disk.
This can be inferred from the figure
below:

Figure 2.2.2: The computed effective temperature (brightness distributions) over the solar disk at

different radio frequencies. The values used for chromospheric and coronal temperatures are
3x104 and 106 °K respectively (after Smerd 1950).

Since the effective temperature
(brightness temperature) at our
wavelength tends to be uniform and
relatively small, we expect the opacity
(optical depth) to decrease as well. Thus,
from the solution of the transfer equation
(assuming uniform temperature in the
chromosphere), it makes sense to expect

the intensity to be uniform and relatively
smaller than that of other smaller
frequencies (low opacity corresponds to
low intensity). Another interesting
observation can be seen from figure
2.2.2; as the frequency increases, the
“size” of the radio disk decreases. This is

· 0 •0
0•0 0•5 1·0 l •S 2 ·5

DISTAi«: £ FROM CtHJ R(OF DISK cl (fN UNUS Of Ro)

 5

due to the fact that the optical depth (τ)
varies as 1/f2.

In summary, at chromospheric
frequencies, the effective temperature of
any ray within the disk (0 < d < 1) is just
the chromospheric temperature, since the
medium effectively has an infinite
optical depth along such trajectories. For
rays outside the disk, the optical

thickness of the medium (and the
effective temperature) falls off rapidly as
the distance of the trajectory from the
center of the disk increases. The disk at
these frequencies has uniform intensity
(assuming a uniform chromospheric
temperature) and a well defined limb.
Limb brightening across the disk would
indicate a chromospheric temperature
gradient.

3 Hardware System

3.1 Parts

The major parts of the 3-element VSRT
system include the dishes, the feeds and
low-noise amplifiers. These outdoor

components as well as antenna
positioning systems, coaxial cables, and
connectors are essential.

3.1.1 Antennas

For the VSRT’s, we use 45 cm diameter
"Direct TV" satellite dishes with their
satellite TV low-noise block-down
converter feeds (LNBF’s) which operate
in the 12.2 to 12.7 GHz band. The
signals from the LNBF’s are processed
using a USB 2.0 video grabber along
with other inexpensive consumer
electronics. The dishes are parabolic in
order to reflect radio waves to the
subreflector. Since radio-astronomical
sources are far away, treating the Sun as
a point source, incoming signals tend to
look like plane waves and the VSRT
must catch as much energy as possible
from this wave and avoid as much as
possible any other signals, especially
local interference. The parabolic antenna
concentrates all this energy into a small
spot where a feed is placed. A typical
antenna has a noise temperature ranging
from 20 to 50 K, resulting principally
from the ground noise component, which
has a temperature of about 290 K. The

most critical gain and hence the most
critical signal losses in a satellite system
occur before the LNB. The dish and the
feed system must work as a team to
extract the maximum signal. Dish gain is
dependent on three factors: surface
accuracy, dish pointing accuracy, and
the match between the feedhorn and the
parabolic surface. If any of these are
inadequate, gain will drop rapidly as the
error increases.

Mispointing can be caused by several
factors. The most common problem is
poorly chosen and installed actuators.
Torque, cable runs and jack size all
affect actuator action. Some positioning
systems start and stop the motor at full
power. This causes a jerking motion as
the antenna begins to move and as it
stops. This can shake the structure
causing screws and bolts to loosen.
Another factor is the structure used. In
our case, we had the VSRT dishes

 6

installed on a table outside, as shown in
figure 3.1.1.1. Rain causes the tables to
sink, and then the dishes are mispointed.
Then, we need to re-level them by
changing the balance again by placing
materials under the legs of the table.

The VSRT dishes used are offset fed
dishes, which can have much smaller
diameters than other satellite dishes. To
visualize the geometry of an offset
system, picture an oval cut from the
upper central portion of a larger
parabolic reflector. While the feed
remains at the focal point of the larger
antenna, only this smaller section of
reflector remains. The feedhorn is
therefore located below the lower edge
of the offset fed reflector. Below is a
picture taken of a VSRT dish:

Figure 3.1.1.1: VSRT dish tracking the
Sun

3.1.2 LNBF’s

Mounted at the dish’s focal point is a
feedhorn. The feedhorn is the front-end
of a waveguide that gathers the signals at
the focal point and conducts them to a
LNB (low-noise block-down converter),
which converts the signals from
EM/radio waves to electrical signals and
shifts the signals to IF (in our case, the
feedhorn is integrated with the LNB).
The feeds of the antennas collect the
radio power from the distant celestial
source. A waveguide is like a hollow
piece of coaxial cable and is one of the
most efficient methods developed to
transport high frequency signals. The
transmission of EM energy depends
upon reflection of signals by the internal
walls of the waveguide as well as upon

current transfer along its surface. To
properly collect the reflected microwave
energy, a feed must ideally “see” or
illuminate the entire surface of an
antenna and nothing else. If the feed is
not matched to the f/D ratio of the dish,
then it may see beyond the edge of the
dish and allow earth noise to enter.
When the f/D ratio and the feed are
properly matched and focused, then the
dish is optimally illuminated. Figure
3.1.2.1 shows the triple feed LNB, which
shows that the dish is being pointed
correctly. We can see that the image of
the Sun is centered at the third feed,
which is an indication that the pointing
for this dish is good. Figure 3.1.2.2
shows how the LNBF looks like inside.

 7

Figure 3.1.2.1: Triple feed LNB is active

Figure 3.1.2.2: Internal circuit of the LNBF used

 8

3.1.3 Cabling

The three antennas are connected with
coaxial cable. The outer jacket protects
the cable from moisture, oil, oxidation,
ozone, acids, and abrasion. The outer
conductor shields the inner conductor
from external EM forces and functions
as the ground return path. The dielectric
core sets up the impedance of the cable

and also insulates the center conductor
from the shield. The center conductor
transports the signals from one end to
the other and must make good
mechanical conduct at both ends using
some type of connector. Below is a
picture of the coaxial cabling installed at
the dish structure outside:

Figure 3.1.3.1: Coaxial cables installed on dish structure

 9

3.2 Simple Block Diagram

Below is a simple block diagram of the 3-baseline VSRT interferometer system developed:

Σ

LNA

LNA

LNA IF Amp

IF Amp

IF Amp

Square-Law
Detector

Local Oscillators

7113 2820 PC
Java

USB

time

Switch

Azimuth Elevation

motors (az.)

motors (el.)

Direct TV 18 x 20'’
offset parabolic dishes

9-bit Video Input
Processor

USB Video
Capture Device

11.25 GHz

11.25 GHz

11.25 GHz
short

intermediate

long

750 MHz

750 MHz

750 MHz

12 GHz

Figure 3.2.1: Simple Block Diagram

The system of coordinates used is an
azimuth-elevation system. The azimuth
is the horizontal angle measured from
north, going clockwise to the object of
interest. The altitude (elevation angle) is
measured upwards from the horizon to
the object. The coordinates of a celestial
object in the horizon system change
continuously during the day because of

the earth’s rotation. It is convenient to
use elevation and azimuth angles in
setting the VSRT’s because it is
steerable around vertical and horizontal
axis. Below is a picture of the VSRT
rotation system controlling the two
adjacent dishes. The azimuth and the
elevation motors can be clearly seen.

 10

Figure 3.2.2: VSRT rotation system controlling two adjacent dishes

The local oscillator is a device used to
generate a signal which is beat against
the signal of interest to mix it to a
different frequency. The LNB is fixed on
the satellite dish. Satellites use
comparatively high radio frequencies to
transmit their signals. When radio
signals are transmitted through coaxial
cable, the higher the frequency, the more
losses occur in the cable per unit length,
which is the main reason that

waveguides are needed. The job of the
LNB is to use the superheterodyne
principle to take a wide block of
relatively high frequencies, amplify and
convert them to similar signals carried at
a much lower frequency (IF). These
lower frequencies travel through cables
with much less attenuation of the signal,
so there’s much more signal left on the
receiver end of the cable.

 11

3.3 Detailed Block Diagram

Below is a more detailed diagram of the hardware involved in the 3-baseline interferometer
system:

Figure 3.3.1: Detailed Hardware Schematic

The hardware include 18’’x20’’
DIRECTV Satellite Dish Antennas with
3 dual LNB’s (AU2-F1), a DC-pass 4
way power splitter (HS-4), an Inline
Amplifier (CAE 9220), several power

injectors (15-1170) and 15 V AC-to-DC
power adapter (273-1691), 3-Amp barrel
diodes 1N5404 (276-1114), some male-
to-male “F” connector adapters (278-
219) and “F” connector to BNC jack

AC

SHARP
Triple-feed LNB

Triple-feed LNB

AU2-F1

CAE 9220 Terk

20dB 10d8

AC

Radio Shack

+15V DC
1000 mA

Radio Shack

+15V DC
1000 mA

Radio Shack

CAE 9220 Radio Shack Attenuator

DC-pass ISO-power
splitter (HS-4)

AC

Radio Shack

DC Power
Injector

Radio Shack

+15V DC
1000 mA

Digikey
Detector diodes

+13.5V

Weeder solid-state switch

Motors

100 pF

3d8

CompUSA

High Speed USB 2.0
video grabber

(SSA 7113, EM 2820)

Radio Shack

USB 2.0

BP Filter
836 MHz, 35 MHz BW

lcaste .com

RS232

PC
Windows lcaste

JAVA USB

other drivers in
parallel

 12

adapters (278-277), coaxial adapters
(BNC female/RCA male) (278-250),
detector diode 1N6263 (497-2508-1-
ND), M61235 6’ RG-6 cables with F
connectors (M61235), 6-ft RG-59
Coaxial cable (BNC) (278-990),
resistors, a 100 pF capacitor, a
CompUSA Video Grabber USB 2.0

(SKU 318714) and a JcommUSB API
(Personal edition). The main sources
were Amazon.com, RadioShack,
Icaste.com and CompUSA. As can be
seen in figure 3.3.1, the detector section
consists of two diodes and a capacitor,
and was soldered together as shown
below:

Figure 3.3.2: Detector Hardware

Also, as shown in figure 3.3.1, we need to drop the +15 V voltage down to +13.5 V using two
diodes in series for the DC power injectors. Here’s how this was done:

Figure 3.3.3: Diode drop for DC Power Injector

3.4 Motor control

Motor control for the Sun tracking
system can be handled using a “horizon
to horizon” satellite dish drive. These
drives are available from an Italian
company called stab. The HH90 unit
costs $80. An industry-standard
communication protocol known as
DiSeqc has been developed for these
drives. An inexpensive solution consists

of using a RS232 solid state switch
module to “push” the buttons on the
handheld Stab MP01 DiSeqc 1.2 control
($39). The MP01 generates three DiSeqc
1.2 commands: move 1 step East, move
1 step West, go to zero position. Below
is a detailed schematic of the motor
control used in the VSRT setup.

 13

Figure 3.4.1: Motor control Block Diagram

Below is a picture of the actual Stab MP01 DiSeqc used:

Figure 3.4.2: Stab MP01 DiSeqc

USB to Video
Grabber

PC

Windows Java
Code

RS232

East

Zero

C B A

Weeder WTSSR-M
Solid State Relay
Module

$69

West

Ground

HH90 or equivalent dish motors

coax coax

HH90 DiSeqc
Motor control

ZERO

MOTOR

$39

coax

$80

coax
to amplifier

+15V
DC Power

Injector

Radio Shack

Radio Shack

GND

+15V DC
1000 mA

 14

4 Concepts Used for Modeling the Sun

4.1 Visibility

By visibility, we represent the amplitude
of the observed lobe pattern; the fringe
amplitude (fringe visibility). The
complex visibility function is equal to
the Fourier transform of the source
brightness distribution. The visibility of
the solar disk can be expressed as a 2D
integral:

∫ ∫=
R

jrz rdrderBzV
0

2

0

)(),()(
π

ϑ ϑϑ ,

where),(ϑrB is the brightness as a
function of the polar coordinates.

The visibility is normalized by dividing

by ∫ ∫
R

rdrdrB
0

2

0

),(
π

ϑϑ . The calculation of

the 2D integral can be done in
rectangular coordinates as well. In this
case, the visibility can be rewritten as the
2D Fourier transform of the brightness.
It is convenient to approximate this
calculation using the superposition of
several 1D integrals, instead of using a
heavily oversampled DFT

For a uniform disk, we compute the normalized visibility as follows:

Rz
RzJ

R

drrzrR
zV

R

uniform
)(2

4

)cos(
)(1

2
0

22

=
−

=
∫

π

where R represents the angular radius of
the sun (radians); z represents the
interferometric phase in radians per

radian, in fact,
λ

π projbasez 2= , where

22][_][_ basenorthbbaseeastbprojbase +=
.

For reference, the simplification to a first order Bessel function was developed as follows:

Rz
RzJ

dr
R

rzrJ
rdrd

R
ezV

RR jrz

uniform
)(2)(2

)(1

0
2

0

0

2

0
2

)sin(

=== ∫∫ ∫
π ϑ

ϑ
π

,

given that ∫=
π

ϑ ϑ
π

2

0

)sin(
0 2

1)(derzJ jrz .

 15

For a uniform disk plus an outer ring, we have:

F

RzJF
Rz

RzJ

zV
+

+
=

1

)()(2

)(
0

1

, where F represents the fraction of the Sun’s radio output in the

enhanced brightness of the limb

For a uniform disk plus many weighted rings:

F

A
Rz

RzJ

zV
+

+
=

1

)(2

)(
1

, where r
R

rrwF
r

r
Δ= ∑

2

1
2

2)(
π

π and r
R

RzrJrw
A

r

r
Δ= ∑

2

1
2

0)(2)(
π
π

When r1 ≤ r < R, rbearw 1

1)(= ,
and when R ≤ r ≤ r2, rbearw 2

2)(−= ,
where a1, a2, b1, b2, are the coefficients
derived from the solution of the
following two nonlinear systems of
equations:

⎩
⎨
⎧

=+
= −

Rb

offsetRb

eaF
ea

1

1

1

)1_(
1

1
00.1

⎩
⎨
⎧

=
=+

+−

−

)2_(
2

2
2

2

0001.0
1

offsetRb

Rb

ea
eaF

In this case, F is the fraction of limb
brightening. The parameters offset_1
and offset_2 give more degrees of
freedom to the limb brightening profile.
They can be described mathematically as
follows:

11_ rRoffset −=
Rroffset −= 22_

In the program, these were set to offset_1
= 0.01 and offset_2 = 0.02. The
following plot shows these parameters
graphically:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X: 0.275
Y: 1.035

Limb Brightening profile, F = 3.5%

Solar Radius (degrees)

N
or

m
al

iz
ed

 V
is

ib
ili

ty

X: 0.265
Y: 1

X: 0.295
Y: 0.0001

0.01

0.02

offset2

offset1

Figure 4.1.1: Limb brightening with many outer rings

We found that the model fits the data
much better when we used more rings

for limb brightening. So far, the
visibility is)()()(lim zVzVzV buniform += .

I I

-
<-> - -

<- > -

-

-

-

I I I \

 16

Note that the weighting function w(r)
varies across the disk (as the radius
changes) and controls the exponential
increase or decay of the limb brightening
profile. The main effect of this more
sophisticated limb brightening technique
is the widening of the closure phase.

Another factor that was added was the
linear gradient applied across the disk.
Even with the relatively large 4° beam of
the VSRT, a brightness gradient of up to

about ± 20% from limb to limb can be
introduced by miss-pointing of the dish
so that the Sun lies on the edge of the
beam. (This was done to simulate
pointing errors.) The linear gradient was
approximated numerically, since there’s
no nice function such as Bessel functions
that fits that curve.

The normalized gradient was to be added
on top of the normalized visibility,
obeying superposition:

4

)sin(
)(2

0

22

R

dr
R
rrzrR

zV

R

g π

β
∫ −

= , where rz is in radians, and β is the gradient fraction

So far, the visibility is given by

)()()()(lim zVzVzVzV gbuniformsun ++= .
To add a sunspot, we simply add the

sunspot’s contribution by taking the
magnitude and normalizing:

)cos(* 2 ϑaspotampVspot = , where a2 is the fraction of flux in the spot (
R

spotsizea =)

spotsun VzVV +=)(, where
λ

πππ
ϑ

)
180

][_
180

][_(2 ybasenorthbxbaseeastb +
= , where λ is the

wavelength (
f
c

=λ) and x and y are defined as the following:

x = spotrad*cos(spotang), where spotang is in radians
y = spotrad*sin(spotang)

where spotang = angle around the sun (radians)
 spotamp = sunspot amplitude (intensity)
 spotrad = distance away from the center of the sun (in units of R: set to 0.2 R)
 spotsize = size of the sunspot (in units of R: set to 0.1 R)

The parameters b_east[base] and
b_north[base] are the u and v projected
baseline components. The projected
baseline is computed by squaring,
adding and taking the square root of the

u and v components, as shown above.
The final normalized visibility with the
contribution of the sunspot is computed
as follows:

 17

nsum
sumiVzV final

22

)(+
= ,

where 2*1 aspotampnsum += and)sin(* 2 ϑaspotampsumi =

4.2 Closure Phase

Suppose we have a three element interferometer set up like the following:

Figure 4.2.1: Simple 3-baseline Interferometer

Let the complex visibility of the fringe associated with baseline bjk be denoted by Vjk. Then, we
have:

jkj
jkjk eVV φ||=

Denoting the measured phase of each
fringe as φjk, we can describe it
mathematically:

jkkj
source

jkjk δεεφφ +−+= , where

kj εε , are atmosphere turbulence-

induced phase errors at the jth, kth
apertures, and jkδ indicates
measurement noise. Now, the three
measured phases in a 3-element
interferometer are summed to compute
the closure phase φc:

)(

)()()(

312312312312

311331233223122112

δδδφφφ

δεεφδεεφδεεφφ

+++++=

+−+++−+++−+=
sourcesourcesource

sourcesourcesource
c

The closure phase is insensitive to phase
errors induced by the atmosphere, but
the measured closure phase is corrupted
by measurement noise. The visibilities
can be superimposed as we add more
things on top. The closure phase can
only take on values of 0 or 180° for any
source that has reflection symmetry

about a line through the centroid
(uniform sun). However, when we add
limb brightening or sunspots, the closure
phase can smoothen out (at the sharp
transition points) or spread out/in its
transition points (from 0 to ± 180°, and
vice-versa).

Dish3

Dish 1

 18

Least squares analysis was applied to the
closure phase curves. A sum of least
squares can be calculated by squaring
the residuals and taking their sum. The

residual is simply the difference between
the observed and the predicted (model)
value.

∑
=

−=
n

i

predicted
i

data
i yysum

1

2)(

where data
iy is the actual data collected for the closure phase,

 and predicted
iy is the predicted data computed from the model.

5 Software Development

Data was taken using a real-time Java
console data acquisition program, which
allowed us to record the visibility
amplitudes and the closure phase in

RAD files. These files were later read by
Matlab or Python. Below is a screenshot
taken while collecting data with the Java
GUI:

Figure 5.1: Java GUI real-time data acquisition system

What we can clearly see in the figure
above is that the VSRT’s are tracking
the Sun, and that a text file is being
recorded. We can see the UT time, the
position of the Sun relative to the Earth,
and at the top right, the spectrum of
three fringes; starting from the right, we
see the intermediate, then the long, and
finally the short baseline.

Programs were developed in MATLAB
to read the data collected from the RAD
files and compare them with the model
developed. These programs are
parameterized in a way so that when the
user runs them, he specifies whether a
sunspot should be applied (along with its
amplitude), whether or not limb

tou: •rnm. 36 2 K sl

pl)IILl:nitcOrr O 0: U II

(U(jHf)IT 80 1 5

Galactic 1- 199 b • 2 1

rot1ec: 77 1'#~ 2 1 l tlei';

Tirntr UH.,teJul 16
VT 2CI07:l!n: 19:0l:-26
LST P.87 brs

$ow«

1- -------- ---,-------------- --------, 9• $,m

·.car

lO ◄O 60 BO JOO
H'1 l.:1ckt,'1'25 1rmw7l :i

VSRT pv;,r: ll8(ll.ll) 3'1; ◄96) 3 13(6S7) pbu c:cl

811 37.d. 2,4) 1 ';57deP,

"Ill Carta-1Te11,1enty ;
1211011 on11 MHt

60 nwnba' baseline$: J
50 number blaickr. 80

in~ llefiOlf O 27 ~ei;;

-40 uvs.: 60K

JO

" 10

Pi,'lk 2i23 K
fpnk 657.326 Ir.Hz
11!l:(ndil 1& '11'1 111.111

 19

brightening should be added (and its
amount), whether or not to use many
rings or one outer ring for limb
brightening, and whether or not a linear
brightness gradient should be added (and
its amount). The motivation for this is
that using MATLAB, the user can
quickly tweak the parameters and rerun

the simulation to see the effect on the
model’s curves. More advanced
programs that handle the least-square
analysis task were also developed.
Further information about these
programs can be found in the “VSRT
Software Documentation” document.

6 Results & Discussion

On July 8th, an intense sunspot appeared
on the sun, and it is of interest to see
how well we can detect that change on
the sun’s surface using the 3 baseline
VSRT interferometer system. To do this,
we utilize the concept of a closure phase.
With three LNB’s, the phase of the
fringes can be added up by going around
a triangle of baselines. We then get a
“closure phase” when the local oscillator
phases cancel. An interesting fact about
the closure phase is that is independent
of the station atmosphere and local
oscillator phases. Since it’s largely free
from instrumental errors (slightly

corrupted by measurement noise), it can
be used to model source structure and
remove the ambiguity in structure
modeled with the visibility amplitudes
alone.

Using this closure phase concept, for a
completely uniform Sun, with no
sunspot activity or limb brightening, we
would expect a jump from 0 to ± 180° at
around 16.25 hrs (UT) and another jump
from -180 to 0° at about 17.5 hrs (UT),
just like shown below in the simulation
for day 192 (blue line):

11 12 13 14 15 16 17 18 19 20 21 22
0

0.25

0.5
Baseline 2 (Intermediate)

V
is

. A
m

pl
itu

de

11 12 13 14 15 16 17 18 19 20 21 22
0

0.05

0.1
Baseline 1 (Long)

V
is

. A
m

pl
itu

de

11 12 13 14 15 16 17 18 19 20 21 22
0

0.2

0.4

0.6

0.8

1

V
is

. A
m

pl
itu

de

Baseline 0 (Short)

gradient: 0%
brightening: 3.5%
brightening + gradient + sunspot: angle = 180, rad = 0.2R, size = 0.1R, amp = 1.5

11 12 13 14 15 16 17 18 19 20 21 22
-200
-150
-100
-50

0
50

100
150
200

Closure Phase

UT Time (hr)

C
lo

su
re

 P
ha

se
 (d

eg
)

Figure 6.1: Simulation showing normalized visibility plots and closure phase

~ ; ~ : : l
l::: ~ :::l

I

 20

The data collected around day 190 (July
9th) suggest that there exist deviations
from this ideal case. Indeed, when we
run our simulation model with a certain
sunspot of some intensity, we see that
the model’s curves tend to fit the actual
data better. The parameters that enter the
model include a surface gradient, limb
brightening, the angular radius of the
Sun, and sunspot attributes. The linear
surface gradient is applied to account for
pointing errors of the hardware. Limb

brightening is applied to simulate the
limb brightening of the sun’s disk.
Sunspot attributes include its position on
the sun (set by its angle and distance
away from the center of the disk), its
relative flux and its intensity.

Although the observing frequency of the
Nobeyama RadioHeliograph is at 17
GHz, we can use their daily images to
evince the existence of solar activity for
days 189, 190, 191, 192 respectively:

Figure 6.2: Nobeyama RadioHeliograph images at 3 UT

 21

For these four days, according to the Nobeyama RadioHeliograph, the solar radius is displayed in
the table below:

Table 6.1: Solar radius across a period of 4 days at a frequency of 17 GHz
Day of Year Solar radius (arc seconds) Solar radius (degrees)

189 955.676 0.2654656
190 955.690 0.2654694
191 955.709 0.2654747
192 955.732 0.2654811

Since our observing frequency is less
than 17 GHz, we expect the sun to
appear larger, thus, a larger angular
radius. To run the models for these days,
we need to determine a value for the
solar radius. Selhorst has published some
papers on radius variations over a solar
cycle, and he found that the overall mean
radius varied from 976.6 ± 1.5 arcsec to
974.8 ± 0.6. (0.2706 to 0.2717 degrees),
using daily maps covering about one
solar cycle (1992-2003). He states that
solar radius measurements at radio
frequencies are not a simple task,
because the Sun lacks a clear quiet
atmosphere. This atmosphere is filled
with ever-changing small structures,
such as sunspots, prominences, spicules,
faculae, that are prominent in the
observed radio Sun. These features
influence the choice of where the solar
radius is measured. If the atmosphere
had a smooth profile, the brightest point
at the solar limb would be close to unity
at a certain frequency (τ = 1). Selhorst et
al. (2003), however, showed that the
limb brightening intensity at 17 GHz is
not uniformly distributed around the
Sun, being larger near the polar region,
indicating the influence of features such
as spicules in the maximum brightening.
This was accounted for in the model by
adjusting the limb brightening profile,
using exponential rising and decaying
envelopes. After a lot of simulations and
fitting throughout these days, we found

that the data is best fit when R = 0.275°.
In fact, we noticed that as the solar
radius increased, the closure phase tends
to become narrower; the transitions from
around zero to ± 180°, and vice-versa.
Thus, most models use this value for the
solar radius.

Since our model contains quite a few
parameters, which leads to extensive
amounts of tweaking these parameters, a
program was developed to construct a
surface, plotting the sum-of-squares
across a set of two parameters. Since our
model seems to be quite sensitive to the
angular radius of the Sun, I decided to
vary the solar radius and the sunspot’s
intensity and compute the sum-of-
squares based on these two variables.
The resulting surface would show
exactly how sensitive the model really is
to the solar radius. Another reason why
this approach was taken to solve the
least squares problem is because the
closure phase is nonlinear, so the best
model has to be found by iterating
through the parameter space to find the
best fit; the fit that minimizes the sum of
the squares of the residuals. The sum of
squares depends only on the closure
phase data collected, and not on any
normalized visibilities of the baselines.
The reason for that is, because the
visibilities are scaled, and thus a scaling
offset can throw off the best fit by a
large amount, and fitting the baselines

 22

closely doesn’t guarantee that the
closure phase will be fit just as well; in
fact, it may be way off. That is why the
closure phase is the cardinal factor of
this analysis. The goal is to be able to

detect a sunspot’s intensity to a
discernable degree.

To demonstrate the usefulness of this
program, here is the resulting sum-of-
squares surface for day 189:

1
1.2

1.4
1.6

1.8
2

2.2

0.27
0.271

0.272
0.273

0.274
0.275

0.276
0.277

0.278
0.279

0.28

4

6

8

10

12

14

16

x 106

X: 2.02
Y: 0.275
Z: 2.338e+006

Sunspot Amplitude

Day = 189, Number of tiles = 400, Exclude data = 1, Gradient = -5%

Angular Radius

S
um

 o
f S

qu
ar

es

4

6

8

10

12

14

16

x 106

Figure 6.3: 3D surface plot for day 189 showing the minimum sum-of-squares point

Pinpointing at the minimum, we can
simply read off the parameters that
optimize the fitting. A model is
computed at every vertex, and then, the
sum of squares is computed. In a sense,

the least-squares solution is found.
Picking the optimum parameters in the
same way, we obtain the following
results for the closure phase for days
190, 191, and 192:

I -,
I -, I

-7

I

- -r-_ I
I "'I"--..

I I

--r-----~-- __ :
I I :--_

- -r,_--.~.__--.I

I 1--..-._

 23

11 12 13 14 15 16 17 18 19 20 21 22
-200

-150

-100

-50

0

50

100

150

200

Data: 718912.rad
Gradient: -5%
Limb brightening: 3.5%
Sunspot: angle = 180, rad = 0.2R, size = 0.1R, amp = 2.02
R = 0.275o

Closure Phase

UT Time (hr)

C
lo

su
re

 P
ha

se
 (d

eg
)

11 12 13 14 15 16 17 18 19 20 21 22
-200

-150

-100

-50

0

50

100

150

200

Data: 719014.rad
Gradient: -5%
Limb brightening: 3.5%
Sunspot: angle = 180, rad = 0.2R, size = 0.1R, amp = 1.5
R = 0.275o

Closure Phase

UT Time (hr)

C
lo

su
re

 P
ha

se
 (d

eg
)

11 12 13 14 15 16 17 18 19 20 21 22
-200

-150

-100

-50

0

50

100

150

200

Data: 719113.rad
Gradient: -1%
Limb brightening: 3.5%
Sunspot: angle = 180, rad = 0.2R, size = 0.1R, amp = 1.36
R = 0.2752o

Closure Phase

UT Time (hr)

C
lo

su
re

 P
ha

se
 (d

eg
)

 11 12 13 14 15 16 17 18 19 20 21 22
-200

-150

-100

-50

0

50

100

150

200

Data: 719211.rad
Gradient: 0%
Limb brightening: 3.5%
Sunspot: angle = 180, rad = 0.2R, size = 0.1R, amp = 1.25
R = 0.275o

Closure Phase

UT Time (hr)

C
lo

su
re

 P
ha

se
 (d

eg
)

Figure 6.4: Actual closure phase data and model fit with optimum parameters

As shown, the models contain the
parameters that fit the closure phase the
best. Slight tweaking took place to

account for outliers. To run the above
simulations, we used the following
parameters for each day:

Table 6.2: Parameters derived from the Sum-of-Squares surfaces

Day of
year

Solar radius
(deg.)

Sunspot
intensity % Gradient % Limb

brightening
189 0.275 2.02 5 3.5
190 0.275 1.50 5 3.5
191 0.2752 1.36 1 3.5
192 0.2749 1.54 0 3.5

Table 6.3: Final parameters used after tweaking

Day of
year

Solar radius
(deg.)

Sunspot
intensity % Gradient % Limb

brightening
189 0.275 2.02 5 3.5
190 0.275 1.50 5 3.5
191 0.2752 1.36 1 3.5
192 0.275 1.25 0 3.5

It’s interesting to know what happens
after day 192 to the sunspot’s intensity.
Although certain difficulties with taking
data hindered our inference capabilities,

the data taken on day 194 showed the
apparent trend to continue. Running the
model on day 194 and adjusting the
parameters empirically,

..
; 0

; ,,
~ii.: .:.

 24

we observe the following closure phase fit:

11 12 13 14 15 16 17 18 19 20 21 22
-200

-150

-100

-50

0

50

100

150

200

Data: 719413.rad
Gradient: 5%
Limb brightening: 3.5%
Sunspot: angle = 180, rad = 0.2R, size = 0.1R, amp = 1.2
R = 0.275o

Closure Phase

UT Time (hr)

C
lo

su
re

 P
ha

se
 (d

eg
)

Figure 6.5: Closure phase fit for day 194

Thus, for day 194, the sunspot intensity
was around 1.15; it’s definitely less than
1.25. This is a good sign since on the
NoRH image on July 13th (day 194), we

see that the sunspot still exists and it’s
less intense than that of July 11th (day
192). Below are the NoRH images for
days 193 and 194, respectively:

Figure 6.6: NoRH images of days 193 and 194

 25

Now, we plot the sunspot trend observed:

189 190 191 192 193 194
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sunspot Intensity Trend

Days

S
un

sp
ot

's
 a

m
pl

itu
de

Figure 6.7: Sunspot trend from July 8th to July 13th

Data on day 193 was not collected and
the point shown above in red is simply a
guess of the sunspot’s intensity. Below

are plots that display the sum-of-squares
vs. sunspot intensity:

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2-0.500.51

2.5

3

3.5

4

4.5

x 10
6

Sunspot Amplitude

Day = 189, Number of tiles = 100, Exclude data = 1, Gradient = -5%

S
um

 o
f S

qu
ar

es

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2-0.500.51

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

x 10
6

Sunspot Amplitude

Day = 190, Number of tiles = 100, Exclude data = 1, Gradient = -5%

S
um

 o
f S

qu
ar

es

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2-0.500.51

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

x 10
6

Day = 191, Number of tiles = 100, Exclude data = 1, Gradient = -1%

Sunspot Amplitude

S
um

 o
f S

qu
ar

es

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2-0.500.51

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
6

Sunspot Amplitude

Day = 192, Number of tiles = 100, Exclude data = 1, Gradient = 0%

S
um

 o
f S

qu
ar

es

Figure 6.8: Series of plots of sum-of-squares vs. sunspot amplitude for four consecutive days at
R = 0.275°

One interesting thing to notice from the
2D plots above is that the minimum is
shifting to the left, moving toward lower
intensity. However, the bottom right plot

in figure 6.8 is a little off, displaying its
minimum sum-of-squares at amplitude
of 1.5, instead of 1.25, because in a non-
weighted least squares sense, an

I I I I I I I I U
__ L __ J_ __ _J __ _J ___ I ___ I_ _ _ _ _ L __ L __ Jl

- - t- - + - - --t - - 7 - - -I - - - I- - - - - f- - - t- - - -ti

"

__ I __ I __ I _____ I ___ I _____ I ___ _L ___ U

II
I I I I I I I ii

__ l_ __ J_ __ _J __ _J __ ___ I ___ I ___ L _ _ _ _ Ill

--t---+---+-----1-- - - -1- - - I- - - f--- - - t- - - Ill

--r--T--1--7-- - - -1- - - 1- - - - - r - - Ill

I I I I I I I II

I I I I I -,--,--ij
__ l_ __ J_ __ _J __ _J __ ___ I__ _ __ L __ L __ Ill

--t---+----t-----j-- - - I- - - f--- - - t- - - Ill

--r--T--1--7-- - -1- - - 1- - - I - - I - - Ill

I I I I I I I
------------ -----------

' I I ' I I
__ L __ j_ ____ _J __ _ __ I ___ I ___ L __ L __ Ill

- - t- - - -t - - --t - - --t - - ----1 - - -1- - -1- - -1- - -

I I I I I I
- - - - - - - - - - - - - - - - - - - -

I I I I I I

--+---+---+-----1-----,---1---1---1--- --tl
I I I I I I I I

--,--T--1--7--7---1 ___ 1 ___ 1___ n
__ l_ __ J_ __ __l __ _J __ _J ___ I ___ I ___ I __ __ n

--1--1--1--7--1---1---1-- 1--- --11

I I I I I I tl
- -

I I I I I I
--+---+---+-----1-----1---1-- 1---1--- --n
--1 --1-- 1-- 1-- 1--- __ I ___ I __ _

__ 1._ __ 1_ __ _..1 __ _J __ _J __ 1 ___ 1 ___ 1 ___ __ n

- .L - -

.L - -

- - 11

1 I I I

- _ I_ - - L - -
I I

- _ I_ - -
I

___ I ___ I ___ I ___ I __

___ I ___ I _____ L __

_ __ I ___ I __ I ___ L __

___ I ______ I ___ I __

__ I ___ I ___ I __

___ I ___ I ___ I ___ I __

 26

amplitude of 1.5 will give you the best
fit, but looking at the result graphically,
we see that the upper data is not fit that
well, so it’s a more natural decision to fit
the data with an intensity of 1.25
because on average, it fits the decay of
the closure phase data slightly better,
which is chiefly determined by the

sunspot’s amplitude; the smaller the
amplitude, the sharper the decay. The
results signify that throughout the period
of these four days, the sunspot’s
intensity was decreasing. The minimum
in the above plots represent the place
where the sum of squares is minimized,
and thus, get a better fit.

7 Conclusion

In summary, we documented the main
hardware involved in the design of the
VSRT’s and showed an approach to
analyzing data recorded from radio
observations on the Sun. Moreover, we
utilized the concept of least squares in
order to infer information about the
sunspot intensity and the solar radius by
taking advantage of the closure phase.
The main goal for this analysis tool is to
be able to automatically determine the
set of parameters {solar radius, sunspot
intensity} that will yield the best fit. We
were successfully able to detect the
sunspot activity with an adequate degree

of accuracy using the 3-element VSRT
system.

Primary focus on future work on this
project should include covering sensitive
parts of the VSRT hardware, since it’s
heavily affected by rain and coming up
with a more stable setup (maybe
mounting the VSRT’s to the wall) to
minimize pointing errors. Finally, more
complicated interferometer experiments
should be carried out; possibly by adding
another dish. Then, we would have four
LNB’s, six baselines, which indicate that
there are three independent closure
phase triangles.

References

[1] Rogers, Alan, E. E., “VSRT Memo Series”,
<http://www.haystack.mit.edu/edu/undergrad/VSRT/VSRT_Memos/memoindex.html>, July 13, 2007.
[2] Haystack Observatory, “Radio Astronomy Tutorial”,
<http://www.haystack.mit.edu/edu/undergrad/materials/RA_tutorial.html>, July 13, 2007.
[3] Baylin, Maddox, and McCormac, World Satellite TV and Scrambling Methods: The Technicians’ Handbook,
2nd ed. Baylin Publications, 1991.
[4] Smerd, S. F., “Radio-Frequency Radiation from the Quiet Sun.”, Division of Radiophysics, C.S.I.R.O.,
University Grounds, Sydney. (August 30, 1949).
[5] Wikipedia, “Black body”, < http://en.wikipedia.org/wiki/Black_body>, July 11, 2007.
[6] Cillié, G. G., and Menzel, D. H., Harv. Coll. Obs. Circ. No. 410 (1935)
[7] Smerd, S. F., and Westfold, K. C., Phil. Mag. 40: 831 (1949)
[8] Kundu, Mukul R., Solar Radio Astronomy, The Radio Astronomy Observatory, The University of Michigan,
Ann Arbor, Michigan, Interscience Publishers, 1965.

 27

Appendix

Here is the simLimb.m Matlab code developed:

function simLimb(apply_gradient, apply_brightening, plot_spot, answer,
beta_input, F_input, input_string, spotamp_input, useManyRings, R_input)
% Function reads an input file and runs a simulation.
% Gradient: used to model pointing error effects on the closure phase, since
the closure phase is
% affected by pointing errors.
% Limb Brightening: more sophisticated limb brighteness profile (exponential)
%
% SYNTAX: simLimb(apply_gradient, apply_brightening, plot_spot,
plot_actual_data, beta_input,
% F_input, input_string, spotamp_input, useManyRings,
R_input)
%
% Example: simLimb(1, 1, 1, 1, 10, 3.5, '718912.rad', 1.6, 1, 0.275);
% simulate a gradient, a sunspot and limb brightening,
% read a data file, apply a 10% gradient and 3.5% limb
% brightening, read data from '718912.rad', set sunspot's
% amplitude to 1.6, use many rings for limb brightening, R = 0.275
%
% Author: Ted Tsiligaridis
% Last Edited: 2007/08/2, Version: 1.6

numargs = 10;
if nargin > numargs,
 error('Too many input arguments.');
elseif nargin < numargs,
 error('Need more input arguments.');
end

% Define global variables
global time_sim_hr;
global base1_sim base2_sim base3_sim closurePhase_sim;
global base1_sim2 base2_sim2 base3_sim2 closurePhase_sim2;
global base1_sim3 base2_sim3 base3_sim3 closurePhase_sim3;
global time_data_hr;
global base1_data base2_data base3_data closurePhase_data;
global input F beta;
global spotang spotsize spotamp spotrad;
global rmax;
global a1 b1 a2 b2;

% Program execution starts --

index_sim = 0; % used for appending numbers in arrays
index_data = 0;

% parse input_string to get new_day
new_day_string = [input_string(2) input_string(3) input_string(4)];
new_day = str2double(new_day_string);
if isnumeric(new_day),
 disp(['New day = ' num2str(new_day)]);

 28

else
 disp('Problem: new_day not read correctly.');
end

% Simulation
freq = 11.25e09 + 836e06; % 12.086 GHz observing frequency
R = num2str(R_input);
R = str2double(R);
rmax = R;
wavl = 299792458.0/freq;

% self-adjusting weighting functions
F = F_input/100.0;
offset_1 = 0.01; offset_2 = 0.02;
eq1 = [num2str(1+F), ' = a*exp(b*', num2str(R), ')'];
[a1, b1] = solve(['1.00 = a*exp(b*', num2str(R - offset_1), ')'], eq1);
a1 = max(double(real(vpa(a1))));
b1 = max(double(real(vpa(b1))));
eq2 = [num2str(1+F), ' = a*exp(-b*', num2str(R), ')'];
[a2, b2] = solve(eq2, ['0.0001 = a*exp(-b*', num2str(R + offset_2), ')']);
a2 = max(double(real(vpa(a2))));
b2 = max(double(real(vpa(b2))));

% define vectors
time_sim = 1:96; time_sim_hr = 1:96;
az_deg_sim = 1:96; el_deg_sim = 1:96;
base1_sim = 1:96; base2_sim = 1:96; base3_sim = 1:96; closurePhase_sim =
1:96;
base1_sim2 = 1:96; base2_sim2 = 1:96; base3_sim2 = 1:96; closurePhase_sim2 =
1:96;
base1_sim3 = 1:96; base2_sim3 = 1:96; base3_sim3 = 1:96; closurePhase_sim3 =
1:96;

% insert spot in the sun
spotang = 180;
spotrad = rmax*0.15;
spotsize = rmax*0.1;
spotamp = spotamp_input;

% initialize temporary arrays
baz = [0, 0, 0]; blen = [0, 0, 0]; belev = [0, 0, 0];
xx = [0, 0, 0]; yy = [0, 0, 0]; zz = [0, 0, 0];
bblen = [0, 0, 0]; delay = [0, 0, 0];
b_r = [0, 0, 0]; b_east = [0, 0, 0]; b_north = [0, 0, 0];
phas = [0, 0, 0]; visibility = [0, 0, 0];
phas2 = [0, 0, 0]; visibility2 = [0, 0, 0];
phas3 = [0, 0, 0]; visibility3 = [0, 0, 0];

disp('Simulation running...');
disp(['Angular radius of Sun = ', num2str(R)]);
numDays = 4;
totalTime = 24*numDays;
for i=0:totalTime-1,
 if mod(i, 24) == 0,
 percent = double(i/(1.0*totalTime)*100.0);
 disp([num2str(percent), '% complete.']);
 end

 29

 lon = toRad(-71.5); % get latitude and longitude of Haystack
 lat = toRad(42.5);
 ttime = double(toSec(2007, new_day, 11, 0, 0)) + i*1800.0/4.0;
 timeStamp = toYrDay(ttime);
 date_tuple = strread(timeStamp, '%s', 'delimiter', ':');
 hr = str2double(date_tuple(2));

 % compute Sun's right ascension and declination
 [ra, dec] = get_sunra_and_dec(ttime);

 % compute azimuth and elevation angles
 ha = double(getGST(ttime) - ra + lon);
 [az, el] = get_radec_az_and_el(ha, dec, lat);

 index_sim = index_sim + 1;
 time_sim(index_sim) = ttime;
 az_deg_sim(index_sim) = az;
 el_deg_sim(index_sim) = el;

 % simulation hardware parameters
 feedoffset = toRad(11.0);
 faz = atan2(sin(feedoffset), cos(feedoffset)*cos(el));
 baz(0 + 1) = (az + faz + pi/2.0);
 baz(1 + 1) = (az + faz - pi/2.0);
 baz(2 + 1) = toRad(107.0);
 blen(0 + 1) = 0.5*21.25*2.54/100.0; % length between two dishes
 blen(1 + 1) = 0.5*21.25*2.54/100.0;
 blen(2 + 1) = (9*12.0 + 7.0 + 7.0/8.0)*2.54/100.0; % distance from the
center point of the two dishes to the third dish
 belev(0 + 1) = 0;
 belev(1 + 1) = 0; % lie in approximately the same plane
 el_ang = 1 + (2*57.3)/(9*12.0 + 7.0 + 7.0/8.0); % ~2 degrees
 elev_offset = -toRad(1)*sin(el);
 belev(2 + 1) = toRad(-el_ang) + elev_offset;

 for stat=0:2,
 lx = blen(stat + 1)*sin(baz(stat + 1));
 ly = blen(stat + 1)*cos(baz(stat + 1));
 lz = blen(stat + 1)*sin(belev(stat + 1));
 xx(stat + 1) = -lx*sin(lon) - ly*cos(lon)*sin(lat) +
lz*cos(lat)*cos(lon);
 yy(stat + 1) = lx*cos(lon) - ly*sin(lon)*sin(lat) +
lz*sin(lon)*cos(lat);
 zz(stat + 1) = ly*cos(lat) + lz*sin(lat);
 end

 for base=0:2,
 % get sx, sy, sz unit vectors in direction of the sun
 gha = double(getGST(ttime) - ra);
 sx = cos(dec)*cos(gha);
 sy = -cos(dec)*sin(gha);
 sz = sin(dec);
 if base < 2,
 bx = xx(base + 1 + 1) - xx(0 + 1);
 by = yy(base + 1 + 1) - yy(0 + 1);
 bz = zz(base + 1 + 1) - zz(0 + 1);
 else

 30

 bx = xx(2 + 1) - xx(1 + 1);
 by = yy(2 + 1) - yy(1 + 1);
 bz = zz(2 + 1) - zz(1 + 1);
 end
 if hr == 16,
 bblen(base + 1) = sqrt(bx*bx + by*by + bz*bz);
 end

 % projected baseline components: u, v
 b_r(base + 1) = bx*cos(gha) - by*sin(gha);
 b_east(base + 1) = by*cos(gha) + bx*sin(gha);
 b_north(base + 1) = bz*cos(dec) - b_r(base + 1)*sin(dec);
 delay(base + 1) = bx*sx + by*sy + bz*sz;

 % apply a brightness gradient
 % compute Bessel function numerically: uniform disk + brightness
gradient
 sumr = 0.0; sumi = 0.0; r = 0;
 if apply_gradient,
 beta = -beta_input/100.0;
 else
 beta = 0.0;
 end
 increment = 0.00005;
 z_start = sqrt(b_east(base + 1)*b_east(base + 1) + b_north(base +
1)*b_north(base + 1));
 z = 2.0*pi*z_start/wavl;
 while r < R,
 xa = sqrt(R*R - r*r);
 xb = cos(r*z*pi/180.0);
 sumr = sumr + (xa*xb);
 if apply_gradient,
 xb = sin(r*z*pi/180.0);
 else
 xb = 0;
 end
 xc = beta*r/R;
 sumi = sumi + (xa*xb*xc);
 r = r + increment;
 end
 a = pi*R*R/4.0;
 sumr = sumr*increment/a;
 sumi = sumi*increment/a;

 phas(base + 1) = toDeg(atan2(sumi, sumr));
 visibility(base + 1) = sqrt(sumr*sumr + sumi*sumi);

 % use Matlab built-in Bessel function: uniform disk + limb
brightening
 if ~apply_brightening,
 F = 0.0;
 else
 F = F_input/100.0;
 end

 if useManyRings == 0,
 % disk + one outer ring

 31

 y1 = 2*besselj(1, R*z*pi/180.0)/(R*z*pi/180.0);
 y2 = F*besselj(0, R*z*pi/180.0);
 y = (y1 + y2)/(1+F);
 else
 % disk + many weighted rings
 y = applyLimb(z, offset_1, offset_2); % y = Vuniform + Vlimb
 end

 phas2(base + 1) = toDeg(atan2(imag(y), real(y)));
 visibility2(base + 1) = abs(y);

 % use Matlab built-in Bessel function and approximate gradient
numerically
 % uniform disk + limb brightening + linear gradient
 r = 0; sum_g = 0.0;
 while r < R, % 0 < r < R (in degrees)
 xa = sqrt(R*R - r*r);
 if apply_gradient,
 xb = sin(r*z*pi/180.0);
 else
 xb = 0;
 end
 xc = beta*r/R; % linear in r
 sum_g = sum_g + (xa*xb*xc);
 r = r + increment; % increment
 end
 a = pi*R*R/4.0; % scale sum
 sum_g = sum_g*increment/a; % divide by pi*R^2/4
 v = y + sum_g; % limb + gradient

 sum2 = 1; sumi = 0;
 % insert sunspot
 if plot_spot,
 x = spotrad*cos(spotang*pi/180.0);
 y = spotrad*sin(spotang*pi/180.0);
 th = 2.0*pi*(b_east(base + 1)*(x*pi/180.0) + b_north(base +
1)*(y*pi/180.0))/wavl;
 a = (spotsize/rmax);
 v = v + spotamp*a*a*cos(th); % V = Vspot + Vsun
 sumi = spotamp*a*a*sin(th);
 sum2 = sum2 + spotamp*a*a;
 end
 phas3(base + 1) = toDeg(atan2(sumi, v));
 visibility3(base + 1) = sqrt(v*v + sumi*sumi)/sum2;
 end
 base1_sim(index_sim) = visibility(0 + 1);
 base2_sim(index_sim) = visibility(1 + 1);
 base3_sim(index_sim) = visibility(2 + 1);
 closurePhase_sim(index_sim) = phas(0 + 1) - phas(1 + 1) + phas(2 + 1);
 base1_sim2(index_sim) = visibility2(0 + 1);
 base2_sim2(index_sim) = visibility2(1 + 1);
 base3_sim2(index_sim) = visibility2(2 + 1);
 closurePhase_sim2(index_sim) = phas2(0 + 1) - phas2(1 + 1) + phas2(2 +
1);
 base1_sim3(index_sim) = visibility3(0 + 1);
 base2_sim3(index_sim) = visibility3(1 + 1);
 base3_sim3(index_sim) = visibility3(2 + 1);

 32

 closurePhase_sim3(index_sim) = phas3(0 + 1) - phas3(1 + 1) + phas3(2 +
1);
end
fprintf(1, ['100%% complete.', '\n']);

% convert time vectors to hours before plotting
start_hr = 11;
for j=0:length(time_sim)-1,
 hour_sim = (time_sim(j + 1) - toSec(2007, new_day, 11, 0, 0))/3600.0;
 time_sim_hr(j + 1) = hour_sim + start_hr;
end

% Actual data
input = input_string;
time_data = [];
time_data_hr = [];
az_deg_data = [];
el_deg_data = [];
daz_deg_data = []; del_deg_data = [];
freq_data = [];
base1_data = []; base2_data = []; base3_data = []; closurePhase_data = [];
time_offset = 0;
a = 50; b = 50; c = 10; % used for scaling actual baseline data

if answer == 1,
 disp(['Reading: ', input]);
 fid = fopen(input, 'r');
 validLines = 0;
 totalLines = 0;
 while feof(fid) == 0,
 tline = fgetl(fid);
 line_tuple = strread(tline, '%s');
 if char(line_tuple(1)) == '*',
 continue;
 end

 if validLines == 1,
 timestamp = char(line_tuple(1));
 timestamp_tuple = strread(timestamp, '%s', 'delimiter', ':');
 new_day = int16(str2double(char(timestamp_tuple(2))));
 time_offset = toSec(int32(str2double(char(timestamp_tuple(1)))),
int32(str2double(char(timestamp_tuple(2)))), 11, 0, 0);
 end

 num = str2double(line_tuple(10));
 if num ~= 999,
 validLines = validLines + 1;
 index_data = index_data + 1;
 stamp = line_tuple(1);
 nexttime = getTime(stamp);

 time_data(index_data) = (double(nexttime) - double(time_offset) +
double(toSec(2007, new_day, 11, 0, 0)));
 hour_data = double((time_data(index_data) - double(toSec(2007,
new_day, 11, 0, 0)))/3600.0);
 time_data_hr(index_data) = hour_data + start_hr;

 33

 if validLines == 1,
 time_data_hr(1) = min(time_data_hr); % avoid off-by-1 error
in the very beginning
 end
 az_deg_data(index_data) = str2double(char(line_tuple(2)));
 el_deg_data(index_data) = str2double(char(line_tuple(3)));
 daz_deg_data(index_data) = str2double(char(line_tuple(4)));
 del_deg_data(index_data) = str2double(char(line_tuple(5)));
 freq_data(index_data) = str2double(char(line_tuple(6)));

 % scale actual data
 base1_data(index_data) = str2double(char(line_tuple(7)))*6e-
2/sqrt(a*b); % intermediate
 base2_data(index_data) = str2double(char(line_tuple(8)))*6e-
2/sqrt(a*c); % long
 base3_data(index_data) = str2double(char(line_tuple(9)))*6e-
2/sqrt(b*c); % short
 closurePhase_data(index_data) = str2double(char(line_tuple(10)));
% closure phase
 end
 totalLines = totalLines + 1;
 end
 fclose(fid);
 fprintf(1, ['Text file successfully read. ', 'valid lines = ',
num2str(validLines), '\n']);
 fprintf(1, [' ', 'total lines = ',
num2str(totalLines), '\n']);
end

plotGraphs(plot_spot, answer);

% Inner functions ---

% advanced limb brightening
function y = applyLimb(z, offset_1, offset_2)
 global rmax;
 global a1 b1 a2 b2;

 R = rmax;
 dr = 0.0005;
 r0 = R - offset_1;
 r1 = R + offset_2;
 sumF = 0.0;
 for r=r0:dr:r1,
 if r < R,
 weight = a1*exp(b1*r);
 else
 weight = a2*exp(-b2*r);
 end
 sumF = sumF + weight*2*pi*r;
 end
 sumF = sumF*dr/(pi*R*R);
 sumA = 0.0;
 for r=r0:dr:r1,
 if r < R,

 34

 weight = a1*exp(b1*r);
 else
 weight = a2*exp(-b2*r);
 end
 sumA = sumA + weight*2*pi*r*besselj(0, toRad(R*z));
 end
 sumA = sumA*dr/(pi*R*R);
 y = (2*besselj(1, toRad(R*z))/(toRad(R*z)) + sumA)/(1 + sumF);
 return;

% input a string, output a float
function time = getTime(timeStamp)
 % do a delimiter read on the time stamp
 date_tuple = strread(char(timeStamp), '%s', 'delimiter', ':');
 year = int32(str2double(char(date_tuple(1)))); % need to convert strings
to doubles
 day = int32(str2double(char(date_tuple(2))));
 hour = int32(str2double(char(date_tuple(3))));
 min = int32(str2double(char(date_tuple(4))));
 sec = int32(str2double(char(date_tuple(5))));
 time = toSec(year, day, hour, min, sec);
 return; % time in seconds

% get time in seconds since 1970
function secs = toSec(yr, day, hr, min, sec)
 secs = (yr - 1970)*31536000.0 + (day - 1)*86400.0 + hr*3600.0 + min*60.0
+ sec;
 for i=1970:yr-1, % i++, 1970 <= k < yr
 if ((mod(i,4) == 0 && mod(i,100) ~= 0) || mod(i,400) == 0),
 secs = secs + 86400.0;
 end
 end
 if secs < 0.0, % year must be before 1970
 secs = 0.0;
 end
 return;

% plot baselines as a subplot
function plotGraphs(plot_spot, answer)
 global time_sim_hr;
 global base1_sim base2_sim base3_sim closurePhase_sim;
 global base1_sim2 base2_sim2 base3_sim2 closurePhase_sim2;
 global base1_sim3 base2_sim3 base3_sim3 closurePhase_sim3;
 global time_data_hr;
 global base1_data base2_data base3_data closurePhase_data;
 global input; global F beta;
 global spotang spotsize spotamp spotrad;
 global rmax;

 figure;

 % account for change in text file series of baselines: base3_data <->
base1_data
 subplot(4,1,1);
 if answer == 1,
 scatter(time_data_hr, base1_data, 5, 'r'); % intermediate baseline
 hold on;

 35

 end
 plot(time_sim_hr, base3_sim, 'b', time_sim_hr, base3_sim2, 'm',
time_sim_hr, base3_sim3, 'k');
 axis([min(time_sim_hr), max(time_sim_hr), 0, 0.5]);
 set(gca, 'YTick', 0:0.25:0.51);
 set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1);
 title('Baseline 2 (Intermediate)');
 ylabel('Vis. Amplitude');

 subplot(4,1,2);
 if answer == 1,
 scatter(time_data_hr, base2_data, 5, 'r'); % long baseline
 hold on;
 end
 plot(time_sim_hr, base2_sim, 'b', time_sim_hr, base2_sim2, 'm',
time_sim_hr, base2_sim3, 'k');
 axis([min(time_sim_hr), max(time_sim_hr), 0, 0.1]);
 set(gca, 'YTick', 0:0.05:0.11);
 set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1);
 title('Baseline 1 (Long)');
 ylabel('Vis. Amplitude');

 subplot(4,1,3);
 if answer == 1,
 scatter(time_data_hr, base3_data, 5, 'r'); % short baseline
 hold on;
 end
 plot(time_sim_hr, base1_sim, 'b', time_sim_hr, base1_sim2, 'm',
time_sim_hr, base1_sim3, 'k');
 if plot_spot,
 sunspot_string = ['brightening + gradient + sunspot: angle = ',
num2str(spotang), ', rad = ', num2str(spotrad/rmax), 'R, size = ',
num2str(spotsize/rmax), 'R, amp = ', num2str(spotamp)];
 else
 sunspot_string = 'brightening + gradient (No sunspot)';
 end
 if answer,
 h = legend(['data: ', input], ['gradient: ', num2str(beta*100.0),
'%'], ['brightening: ', num2str(F*100), '%'], sunspot_string, 4);
 else
 h = legend(['gradient: ', num2str(beta*100.0), '%'], ['brightening:
', num2str(F*100), '%'], sunspot_string, 3);
 end
 set(h,'Interpreter','none');
 axis([min(time_sim_hr), max(time_sim_hr), 0, 1.1]);
 set(gca, 'YTick', 0:0.2:1.1);
 set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1);
 title('Baseline 0 (Short)');
 ylabel('Vis. Amplitude');

 subplot(4,1,4);
 if answer == 1,
 scatter(time_data_hr, closurePhase_data, 5, 'r'); % plot actual data
 hold on;
 end
 plot(time_sim_hr, closurePhase_sim, 'b', time_sim_hr, closurePhase_sim2,
'm', time_sim_hr, closurePhase_sim3, 'k');

 36

 axis([min(time_sim_hr), max(time_sim_hr), -200, 200]);
 set(gca, 'YTick', -200:50:201);
 set(gca, 'XTick', min(time_sim_hr):1:max(time_sim_hr)+1);
 title('Closure Phase');
 xlabel('UT Time (hr)'); % time scale is the same for all plots
 ylabel('Closure Phase (deg)');

 return;

% calculate Sun ra and dec (approximate)
% see Astronomical Almanac page C24 Sun 1999
function [ra, dec] = get_sunra_and_dec(time) % input: float time in seconds
 n = -365.5 + double(time - toSec(1999, 1, 0, 0, 0)) / 86400.0;
 g = (357.528 + 0.9856003 * n) * pi / 180.0;
 lon = (280.460 + 0.9856474 * n + 1.915 * sin(g) + 0.02 * sin(2 * g)) * pi
/ 180.0;
 ecl = (23.439 - 0.0000004 * n) * pi / 180.0;
 ra = double(atan2(sin(lon) * cos(ecl), cos(lon))); % returns atan(y/x) in
radians (between -pi and pi)
 dec = double(asin(sin(lon) * sin(ecl)));
 return; % return a list of the two parameters

% convert from sky to antenna coords (azel mount)
% input: has,decs,lat
% output: azs = azimuth of source
% elev = elevation of source
function [azs, elev] = get_radec_az_and_el(has, decs, lat)
 p = sin(decs);
 w = sin(has) * cos(decs);
 r = cos(has) * cos(decs);
 zen = r * cos(lat) + p * sin(lat);
 north = -r * sin(lat) + p * cos(lat);
 elev = atan2(zen, sqrt(north * north + w * w));
 azs = atan2(-w, north);
 if azs < 0,
 azs = azs + pi * 2.0;
 end
 return;

% get Greenwich sidereal time, input: time in seconds since 1970
function d = getGST(ttime)
 secs = (1999-1970)*31536000.0 + 17.0*3600.0 + 16.0*60.0 + 20.1948;
 for i=1970:1999,
 if ((mod(i,4) == 0 && mod(i,100) ~= 0) || mod(i,400) == 0),
 secs = secs + 86400.0;
 end
 end
 % 17 16 20.1948 UT at 0hr newyear 1999
 remainder = rem((ttime-secs),86164.09053);
 decimal = remainder/86164.09053; % decimal part of division
 d = decimal*2.0*pi;
 return;

% convert seconds to Yr/Day/Hr/Min/Sec
function date = toYrDay(secs)
 i = 1970; % initialize 'i' before entering the while loop
 day = floor(secs/86400.0);

 37

 sec = secs - day*86400.0;
 while day > 365,
 i = i + 1;
 temp = ((mod(i,4) == 0 & mod(i,100) ~= 0) | mod(i,400) == 0); %
boolean
 if temp == 1, days = 366;
 else days = 365; end
 day = day - days;
 end
 phr = int64(sec/3600.0); % casting issue with int64(), need to convert to
double
 sec = sec - double(phr)*3600;
 pmin = int64(sec/60.0);
 psec = sec - double(pmin)*60;
 pyear = i;
 day = day + 1;
 pday = day;
 if day == 366, % fix problem with day 366
 temp = ((mod(i,4) == 0 & mod(i,100) ~= 0) | mod(i,400) == 0); %
boolean
 if temp == 1, days = 366;
 else days = 365; end
 if days == 365,
 day = day - 365;
 pday = day;
 pyear = i+1;
 end
 end
 % concatenate strings together to return timestamp as a string
 date = [num2str(pyear), ':', num2str(int64(pday)), ':',
num2str(int64(phr)), ':', num2str(int64(pmin)), ':', num2str(int64(psec))];
 return;

% convert radians to degrees
function conversion1 = toDeg(radians)
 conversion1 = radians*180.0/pi;
 return;

% convert degrees to radians
function conversion2 = toRad(degrees)
 conversion2 = degrees*pi/180.0;
 return;

Below is the Python program simGradient.py developed:

Script reads an input file and runs a simulation.
Brightness Gradient: used to model pointing error effects on the closure phase, since the closure phase is
affected by poiting errors.(Old limb brightening profile)

Author: Ted Tsiligaridis
Last Edited: 2007/07/06, Version: 1.1

from pylab import *; # import everything from pylab
from math import *; # import math

 38

from Tkinter import *; # for canvas
from scipy.special import *; # for Bessel functions

input a string, output a float
def getTime(timeStamp):
 # do a delimiter read on the time stamp
 timevec = timeStamp.split(':');
 year = float(timevec[0]); # need to convert string to float
 day = float(timevec[1]);
 hour = float(timevec[2]);
 min = float(timevec[3]);
 sec = float(timevec[4]);
 time = toSec(year, day, hour, min, sec);
 return time; # time in seconds

get time in seconds since 1970
def toSec(yr, day, hr, min, sec):
 secs = 0.0;
 secs = (yr - 1970)*31536000.0 + (day - 1)*86400.0 + hr*3600.0 + min*60.0 + sec;
 for i in range(1970, int(yr)): # i++, 1970 <= k < yr
 if ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0):
 secs += 86400.0;
 if secs < 0.0: # year must be before 1970
 secs = 0.0;
 return secs;

input a line as a string, output a tuple of the line
def getTuple(line):
 # do a delimiter read on this line
 return line.split(); # use for any amount of spaces

turn list into a string
def getString(list):
 return ":".join(list); # put ":" in between strings

interactive menu
def menu():
 ans = 0;
 while ans != 3:
 print "---- Plot Menu ----"
 print "1. Plot Results";
 print "2. Show Sun";
 print "3. Exit\n";
 ans = int(raw_input("Enter choice: "));
 checkAnswer(ans);
 # out of the loop
 print "Successfully exited menu.";

check the user's response
def checkAnswer(ans):
 if ans==1:
 plotGraphs();
 elif ans==2:
 showSun();
 elif ans==3:
 print; # do nothing (print blank line)

 39

 else: # default
 print "Please pick one of the choices.";

plot baselines as a subplot
def plotGraphs():
 figure(1);

 # account for change in text file series of baselines: base3_data <-> base1_data
 subplot(411);
 scatter(time_data_hr, base1_data, s=5, c='r', edgecolor='r'); # intermediate
 plot(time_sim_hr, base3_sim, 'b', time_sim_hr, base3_sim2, 'm', time_sim_hr, base3_sim3, 'k');
 axis([min(time_sim_hr), max(time_sim_hr), 0, 0.5]);
 title('Baseline 2 (Intermediate)');
 yticks(arange(0, 0.51, 0.25));
 xticks(arange(min(time_sim_hr), max(time_sim_hr)+1)); # label x-axis using tick marks from 11 to 23
 ylabel('Vis. Amplitude');

 subplot(412);
 scatter(time_data_hr, base2_data, s=5, c='r', edgecolor='r'); # long
 plot(time_sim_hr, base2_sim, 'b', time_sim_hr, base2_sim2, 'm', time_sim_hr, base2_sim3, 'k');
 axis([min(time_sim_hr), max(time_sim_hr), 0, 0.1]);
 title('Baseline 1 (Long)');
 yticks(arange(0, 0.11, 0.05));
 xticks(arange(min(time_sim_hr), max(time_sim_hr)+1));
 ylabel('Vis. Amplitude');

 subplot(413);
 scatter(time_data_hr, base3_data, s=5, c='r', edgecolor='r'); # short
 plot(time_sim_hr, base1_sim, 'b', time_sim_hr, base1_sim2, 'm', time_sim_hr, base1_sim3, 'k');
 if plot_spot:
 sunspot_string = 'brightening + gradient + sunspot: angle = ' + str(spotang) + ', rad = ' + str(spotrad/rmax) + 'R,
size = ' + str(spotsize/rmax) + 'R, amp = ' + str(spotamp);
 else:
 sunspot_string = 'brightening + gradient (No sunspot)';
 h = legend(('gradient: ' + str(beta*100.0) + '%','brightening: ' + str(F*100) + '%',sunspot_string), loc=0,
shadow=1);
 axis([min(time_sim_hr), max(time_sim_hr), 0, 1.1]);
 title('Baseline 0 (Short)');
 yticks(arange(0, 1.1, 0.2));
 xticks(arange(min(time_sim_hr), max(time_sim_hr)+1));
 ylabel('Vis. Amplitude');

 subplot(414);
 scatter(time_data_hr, closurePhase_data, s=5, c='r', edgecolor='r'); # plot actual data
 plot(time_sim_hr, closurePhase_sim, 'b', time_sim_hr, closurePhase_sim2, 'm', time_sim_hr, closurePhase_sim3,
'k');
 axis([min(time_sim_hr), max(time_sim_hr), -200, 200]);
 yticks(arange(-200, 201, 50));
 title('Closure Phase');
 xlabel('UT Time (hr)');
 xticks(arange(min(time_sim_hr), max(time_sim_hr)+1));
 ylabel('Closure Phase (deg)');
 text(11.5, 100, 'R = ' + str(R), color='k');

 show();

 40

show the sun spot on the sun graphically
def showSun():
 canvas = Canvas(width=400, height=400, bg='black');
 canvas.pack(expand='yes', fill='both');
 main = canvas.create_oval(0, 0, 400, 400, width=1, tags='Default Sun', fill='orange');
 v_line = canvas.create_line(200, 0, 200, 400, fill='white');
 h_line = canvas.create_line(0, 200, 400, 200, fill='white');

 # spot's center coordinates
 x = spotrad*cos(spotang*pi/180.0);
 y = spotrad*sin(spotang*pi/180.0);
 center_x = int(200*(1.0-x/rmax));
 center_y = int(200*(1.0+y/rmax));

 # Assume spotamp = 1 (intensity)
 spot_size_pix = int((spotsize/rmax)*200);
 x0 = center_x - spot_size_pix;
 y0 = center_y - spot_size_pix;
 x1 = center_x + spot_size_pix;
 y1 = center_y + spot_size_pix;
 spot = canvas.create_oval(x0, y0, x1, y1, width=1, tags='Sun spot', fill='red');

 name = canvas.create_text(200, 50, text='Sun');
 if apply_gradient:
 gradient_text = canvas.create_text(200, 40, text=str(beta*100.0) + '% brightness gradient');
 if apply_brightening:
 brightening_text = canvas.create_text(200, 30, text=str(F*100.0) + '% limb brightening');
 angular_radius_text = canvas.create_text(30, 10, text='R = ' + str(R), fill='#fff');
 mainloop();

calculate Sun ra and dec (approximate)
see Astronomical Almanac page C24 Sun 1999
def get_sunra_and_dec(time): # input: float time in seconds
 n = -365.5 + (time - toSec(1999, 1, 0, 0, 0)) / 86400.0;
 g = (357.528 + 0.9856003 * n) * pi / 180.0;
 lon = (280.460 + 0.9856474 * n + 1.915 * sin(g) + 0.02 * sin(2 * g)) * pi / 180.0;
 ecl = (23.439 - 0.0000004 * n) * pi / 180.0;
 ra = atan2(sin(lon) * cos(ecl), cos(lon)); # returns atan(y/x) in radians (between -pi and pi)
 dec = asin(sin(lon) * sin(ecl));
 return [ra, dec]; # return a list of the two parameters

convert from sky to antenna coords (azel mount)
input: has,decs,lat
output: azs = azimuth of source
elev = elevation of source
def get_radec_az_and_el(has, decs, lat):
 p = sin(decs);
 w = sin(has) * cos(decs);
 r = cos(has) * cos(decs);
 zen = r * cos(lat) + p * sin(lat);
 north = -r * sin(lat) + p * cos(lat);
 elev = atan2(zen, sqrt(north * north + w * w));
 azs = atan2(-w, north);
 if azs < 0:
 azs = azs + pi * 2.0;
 return [azs, elev];

 41

get Greenwich sidereal time, input: time in seconds since 1970
def getGST(ttime):
 secs = (1999-1970)*31536000.0 + 17.0*3600.0 + 16.0*60.0 + 20.1948;
 for i in range(1970, 1999):
 if ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0):
 secs += 86400.0;
 # 17 16 20.1948 UT at 0hr newyear 1999
 [decimal, integer] = modf((ttime-secs)/86164.09053);
 return (decimal * 2.0*pi);

convert seconds to Yr/Day/Hr/Min/Sec
def toYrDay(secs):
 i = 1970; # initialize 'i' before entering the while loop
 day = floor(secs/86400.0);
 sec = secs - day*86400.0;
 while day > 365:
 i += 1;
 temp = ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0); # boolean
 if temp == 1: days = 366;
 else: days = 365;
 day -= days;
 phr = int(sec/3600.0);
 sec -= phr*3600.0;
 pmin = int(sec/60.0);
 psec = sec - pmin*60;
 pyear = i;
 day += 1;
 pday = day;
 if day == 366: # fix problem with day 366
 temp = ((i % 4 == 0 & i % 100 != 0) | i % 400 == 0); # boolean
 if temp == 1: days = 366;
 else: days = 365;
 if days == 365:
 day -= 365;
 pday = day;
 pyear = i+1;
 return getString([str(pyear), str(int(pday)), str(int(phr)), str(int(pmin)), str(int(psec))]); # return timestamp as a
string

convert radians to degrees
def toDeg(radians):
 rad_to_deg = 180.0/pi;
 return radians*rad_to_deg;

convert degrees to radians
def toRad(degrees):
 deg_to_rad = pi/180.0;
 return degrees*deg_to_rad;

Program execution starts ---

Actual data

#input = raw_input("Enter input filename: "); # allow user to enter filename

 42

input = '718614.rad'; print "Reading: " + input;
file = open(input, 'r'); # open for read

read first two lines
firstline = file.readline(); # read first line
secondline = file.readline(); # ignore second line

value = firstline.split(' '); # delimiter: space; tuple (ordered list)
print value[1] + ": Latitude = " + value[4] + ", Longitude West = " + value[8];

allLines = file.readlines();
print "Number of samples = " + str(len(allLines)); # length of file
print "Reading file...";

define vectors
timeStamp_data = []; # holds Strings
time_data = []; # holds computed time in seconds
time_data_hr = [];
az_deg_data = []; # holds azimuth angle as a float
el_deg_data = []; # holds elevation angle as a float
daz_deg_data = [];
del_deg_data = [];
freq_data = [];
base1_data = [];
base2_data = [];
base3_data = [];
closurePhase_data = [];
a = 50; b = 50; c = 10; # used for scaling actual baseline data

thirdline = getTuple(allLines[0]); # read first line of timestamped lines
time_stmp = thirdline[0]; # string
time_tuple = time_stmp.split(':');
new_day = int(time_tuple[1]);
time_offset = toSec(int(time_tuple[0]), int(time_tuple[1]), 11, 0, 0);

loop to read every line of the file
for i in range(len(allLines)): # i = index of sample
 nextline = getTuple(allLines[i]); # break down line
 if nextline[0] == '*': # ignore lines which start with a star
 continue;
 # get data points and add values in vectors(lists) using append
 if int(nextline[9]) != 999: # ignore line if closure phase = 999
 stamp = nextline[0];
 timeStamp_data.append(stamp); # time stamp vector
 nexttime = getTime(stamp);
 time_data.append(nexttime - time_offset + toSec(2007, new_day, 11, 0, 0)); # account for the starting time of
the simulation
 az_deg_data.append(float(nextline[1]));
 el_deg_data.append(float(nextline[2]));
 daz_deg_data.append(float(nextline[3]));
 del_deg_data.append(float(nextline[4]));
 freq_data.append(float(nextline[5]));

 # scale actual data
 base1_data.append(float(nextline[6])*6e-2/sqrt(a*b)); # intermediate
 base2_data.append(float(nextline[7])*6e-2/sqrt(a*c)); # long

 43

 base3_data.append(float(nextline[8])*6e-2/sqrt(b*c)); # short
 closurePhase_data.append(float(nextline[9])); # closure phase

Close file
file.close();
print "Text file successfully read.\n";

Simulation
freq = 11.25e09 + 836e06;
R = raw_input("Enter angular radius of the Sun: ");
rmax = R = float(R); # in degrees
wavl = 299792458.0/freq; # meters

define vectors
time_sim = []; # holds computed time in seconds
time_sim_hr = [];
az_deg_sim = [];
el_deg_sim = [];
base1_sim = []; base2_sim = []; base3_sim = []; closurePhase_sim = [];
base1_sim2 = []; base2_sim2 = []; base3_sim2 = []; closurePhase_sim2 = [];
base1_sim3 = []; base2_sim3 = []; base3_sim3 = []; closurePhase_sim3 = [];

insert spot in the sun
spotang = 0;
spotrad = rmax*0.2;
spotsize = rmax*0.1;
spotamp = 1;

initialize temporary arrays
baz = [0, 0, 0]; blen = [0, 0, 0]; belev = [0, 0, 0];
xx = [0, 0, 0]; yy = [0, 0, 0]; zz = [0, 0, 0];
bblen = [0, 0, 0]; delay = [0, 0, 0];
b_r = [0, 0, 0]; b_east = [0, 0, 0]; b_north = [0, 0, 0];
crr = [0, 0, 0]; phas = [0, 0, 0]; visibility = [0, 0, 0]; # used in plotting
crr2 = [0, 0, 0]; phas2 = [0, 0, 0]; visibility2 = [0, 0, 0];
crr3 = [0, 0, 0]; phas3 = [0, 0, 0]; visibility3 = [0, 0, 0];

simulation loop
print "Simulation running...";
print "Angular radius of Sun = " + str(R); # display R
numDays = 4;
totalTime = 24*numDays;
for i in range(totalTime): # time loop
 if i % 24 == 0:
 percent = int(i/float(totalTime)*100.0);
 print str(percent) + "% complete.";
 lon = toRad(-71.5); # get latitude and longitude of Haystack
 lat = toRad(42.5);
 hgt = 0.0;
 ttime = toSec(2007, new_day, 11, 0, 0) + i*1800.0/4.0;
 timeStamp = toYrDay(ttime);
 delim = timeStamp.split(':');
 hr = delim[2];

 # compute Sun right ascension and declination

 44

 [ra, dec] = get_sunra_and_dec(ttime); # output: radians

 # compute azimuth and elevation angles
 ha = getGST(ttime) - ra + lon; # radians
 [az, el] = get_radec_az_and_el(ha, dec, lat); # output: radians

 time_sim.append(ttime); # record time
 az_deg_sim.append(az);
 el_deg_sim.append(el);
 rap = toRad(286.11); # radians
 decp = toRad(63.85);
 x = cos(decp)*cos(rap - ra);
 y = cos(decp)*sin(rap - ra);
 z = sin(decp);
 tilt = atan2(y, z*cos(dec)); # PA of sun's rotation axis relation "up" of the disk

 # simulation parameters
 feedoffset = toRad(11.0);
 faz = atan2(sin(feedoffset), cos(feedoffset)*cos(el));
 baz[0] = (az + faz + pi/2.0); # azimuth angle
 baz[1] = (az + faz - pi/2.0);
 baz[2] = toRad(107.0); # radians
 blen[0] = 0.5*21.25*2.54/100.0; # length between
 blen[1] = 0.5*21.25*2.54/100.0;
 blen[2] = (9*12.0 + 7.0 + 7.0/8.0)*2.54/100.0; # 9 ft and 7+7/8 inches --> convert to meters (in. -> m.)
 belev[0] = 0;
 belev[1] = 0; # lie in approximately the same plane
 el_ang = 1 + (2*57.3)/(9*12.0 + 7.0 + 7.0/8.0); # ~2 degrees
 elev_offset = -toRad(1)*sin(el);
 belev[2] = toRad(-el_ang) + elev_offset;

 for stat in range(3):
 lx = blen[stat]*sin(baz[stat]); # local x-y-z
 ly = blen[stat]*cos(baz[stat]);
 lz = blen[stat]*sin(belev[stat]);
 x = -lx*sin(lon) - ly*cos(lon)*sin(lat) + lz*cos(lat)*cos(lon);
 y = lx*cos(lon) - ly*sin(lon)*sin(lat) + lz*sin(lon)*cos(lat);
 z = ly*cos(lat) + lz*sin(lat);
 xx[stat] = x; # store coordinates
 yy[stat] = y;
 zz[stat] = z;

 for base in range(3):
 # get sx, sy, sz unit vectors in direction of the sun
 gha = getGST(ttime) - ra; # Greenwich hour angle
 sx = cos(dec)*cos(gha);
 sy = -cos(dec)*sin(gha);
 sz = sin(dec);
 if base < 2:
 bx = xx[base + 1] - xx[0];
 by = yy[base + 1] - yy[0];
 bz = zz[base + 1] - zz[0];
 else:
 bx = xx[2] - xx[1];
 by = yy[2] - yy[1];
 bz = zz[2] - zz[1];

 45

 if hr == 16:
 bblen[base] = sqrt(bx*bx + by*by + bz*bz);

 # projected baselines: u, v
 b_r[base] = bx*cos(gha) - by*sin(gha);
 b_east[base] = by*cos(gha) + bx*sin(gha); # u
 b_north[base] = bz*cos(dec) - b_r[base]*sin(dec); # v
 delay[base] = bx*sx + by*sy + bz*sz;

 # apply a brightness gradient
 apply_gradient = 1; # boolean to control application of gradient

 # compute Bessel function numerically: uniform disk + linear brigtness gradient
 # sun with gradient from antenna mispointing: single integral
 sumr = 0.0; sumi = 0.0; r = 0;
 #beta = -(0.203971 + 0.239426)/2; % determine this factor to get the correct beamwidth at half power
 if apply_gradient:
 beta = -0.1;
 else:
 beta = 0.0;
 increment = 0.00005;
 z_start = sqrt(b_east[base]*b_east[base] + b_north[base]*b_north[base]);
 z = 2.0*pi*z_start/wavl; # depends on the angles: ra, dec, and ttime
 while r < R: # 0 < r < R (in degrees)
 xa = sqrt(R*R - r*r);
 xb = cos(r*z*pi/180.0);
 sumr = sumr + (xa*xb);
 if apply_gradient:
 xb = sin(r*z*pi/180.0);
 else:
 xb = 0;
 xc = beta*r/R;
 sumi = sumi + (xa*xb*xc);
 r = r + increment; # increment

 # scale sum
 a = pi*R*R/4.0;
 sumr = sumr*increment/a; # divide by pi*R^2/4
 sumi = sumi*increment/a;

 crr[base] = sqrt(sumr*sumr + sumi*sumi);
 phas[base] = toDeg(atan2(sumi, sumr));
 visibility[base] = crr[base];

 # use Python built-in Bessel function: uniform disk + limb brightening
 apply_brightening = 1;
 if apply_brightening == 0:
 F = 0.0;
 else:
 F = 0.035; # fraction of the Sun's radio output in the enhanced brightness of the limb
 y1 = 2*jn(1, R*z*pi/180.0)/(R*z*pi/180.0); # uniform disk
 y2 = F*jn(0, R*z*pi/180.0); # limb brightening
 y = (y1 + y2)/(1 + F);
 crr2[base] = abs(y);
 phas2[base] = toDeg(atan2(imag(y), real(y)));
 visibility2[base] = crr2[base];

 46

 # approximate gradient numerically and use previous result
 # uniform disk + limb brightening + linear gradient
 r = 0; sum_g = 0.0;
 while r < R: # 0 < r < R (in degrees)
 xa = sqrt(R*R - r*r);
 if apply_gradient:
 xb = sin(r*z*pi/180.0);
 else:
 xb = 0;
 xc = beta*r/R;
 sum_g = sum_g + (xa*xb*xc);
 r = r + increment; # increment
 a = pi*R*R/4.0; # scale sum
 sum_g = sum_g*increment/a; # divide by pi*R^2/4

 v = y + sum_g; # limb + gradient

 sum2 = 1;
 sumi = 0;
 # sun spot
 plot_spot = 1;
 if plot_spot:
 x = spotrad*cos(spotang*pi/180.0);
 y = spotrad*sin(spotang*pi/180.0);
 th = 2.0*pi*(b_east[base]*(x*pi/180.0) + b_north[base]*(y*pi/180.0))/wavl;
 a = (spotsize/rmax); # a^2: fraction of flux in spot
 v = v + spotamp*a*a*cos(th); # use superposition to add the sums, V = Vspot + Vsun
 sumi = spotamp*a*a*sin(th);
 sum2 = sum2 + spotamp*a*a; # sum used for normalizing

 crr3[base] = sqrt(v*v + sumi*sumi)/sum2;
 phas3[base] = toDeg(atan2(sumi, v));
 visibility3[base] = crr3[base];

 # outside of the 'base' loop
 base1_sim.append(visibility[0]);
 base2_sim.append(visibility[1]);
 base3_sim.append(visibility[2]);
 closurePhase_sim.append(phas[0] - phas[1] + phas[2]);
 base1_sim2.append(visibility2[0]);
 base2_sim2.append(visibility2[1]);
 base3_sim2.append(visibility2[2]);
 closurePhase_sim2.append(phas2[0] - phas2[1] + phas2[2]);
 base1_sim3.append(visibility3[0]);
 base2_sim3.append(visibility3[1]);
 base3_sim3.append(visibility3[2]);
 closurePhase_sim3.append(phas3[0] - phas3[1] + phas3[2]);

print "100% complete.\n";

convert time vectors to hours before plotting
start_hr = 11;
for j in range(len(time_sim)): # rescale time_sim vector
 hour_sim = (time_sim[j] - toSec(2007, new_day, 11, 0, 0))/3600.0; # account for sim. start time
 time_sim_hr.append(hour_sim + start_hr); # start at 11 hours

 47

for k in range(len(time_data)): # rescale time_data vector
 hour_data = (time_data[k] - toSec(2007, new_day, 11, 0, 0))/3600.0;
 time_data_hr.append(hour_data + start_hr);

interactive menu
menu();

