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1. Calibration and Measurements with a 7.5-Foot Radio Telescope at 1420 MHz
(led by Ben Maruca and Diego Munoz)

1.1. Receiver Temperature

We had at our disposal, two separate calibration schemes. For the first of these, the “calibrated
load” method, we pointed the dish to an “empty” part of the sky. Though the antenna was not
directed to any particular source, power P was still measured from the atmosphere (Tatm) and
from the receiver (Trec). We then electronically added into the signal power from a calibrated load
that had a temperature TC and measured the power that it added to the overall signal, Pcal. Since
the system was not calibrated, any measurements of power (an subsequently temperature) were
in arbitrary and unknown units. Therefore, we could only reliable measure the ratio of these two
powers:

yc =
P

Pcal
=

Trec + Tatm

Tcal
. (1)

In particular, we measured yc = 1.01.

For the second calibration scheme, the “absorber” method, we again began by measuring the power
P when the dish was directed at empty sky. Recall that P is the sum of power from the atmosphere
at a temperature Tatm and that from the receiver at a temperature Trec. We then introduced a
thick block of absorbent foam between the antenna’s dish and its feed. In this case, power from
the receiver is still collected while that from the atmosphere is blocked by the foam. Instead, the
total power measured (Pabs) is the sum of the power from the receiver and that from the foam. We
assumed that the foam was a thermal emitter at a temperature Tabs. Since, as before, the units
of power in an uncalibrated system have no physical meaning, we could only measure the ratio of
these two powers:

ya =
Pabs

P
=

Trec + Tabs

Trec + Tatm
. (2)

By measuring system temperature both with the foam removed and inserted, we found that ya =
2.48.

Solving Equations (1) and (2) each for the receiver temperature gives
{

Trec = ycTcal − Tatm

Trec = Tabs−yaTatm

ya−1

. (3)

If we assume that both of these methods are equally reliable, then we may equate these two
expressions as follows:

yc (ya − 1) Tcal + Tatm = Tabs . (4)

The substitution of our measured values of yc and ya gives

1.48 Tcal + Tatm = Tabs . (5)
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From this expression, it is clear that the receiver temperature Trec can only be inferred if two of
the following values are known in physical units: Tabs, Tatm, and Tcal. Unfortunately, we have
limited information on these three quantities. If the absorber were perfect, then Tabs would be
approximately the ambient temperature, which was about 295 K. However, since a perfect absorber
does not exist, the value of 295 K is only an upper bound to Tabs. The effective atmospheric
temperature, Tatm, is likewise difficult to discern since it depends on variations in weather and the
elevation-angle of the dish. However, at wavelengths near λ0 = 21 cm, Tatm is known to range from
about 0 K to about 30 K. Finally, while we were informed that Tcal was about 100 K, but we were
not provided with a more exact value and were not able to measure the value of Tcal ourselves.

Table 1 gives sets of values of Tabs, Tatm, and Tcal that satisfy Equation (5) and are consistent with
the limited information that we have about each quantity as stated above. In fact, there is quite a
wide range of values for each of these three temperatures, which corresponds to a problematically
wide range is possible values for the receiver temperature (Equation 3). Given that so many of the
following calculations rely directly on the receiver temperature, we decided to choose “reasonable”
values for Tabs, Tatm, and Tcal and to use these to solve from Trec. While this gives a value of Trec

that is not exact, it does give a value that is “typical” and useful for assessing the system’s general
performance.

Table 1: Various choices for Tabs, Tatm, and Tcal that are consistent with Equation (5).

Tatm = 0 K Tatm = 30 K
Tcal Tabs Tabs

50 K 74 K 104 K
75 K 111 K 141 K
100 K 148 K 178 K
125 K 185 K 215 K
150 K 222 K 252 K
175 K 259 K 289 K

We assume that the absorber, though not perfect, was significantly opaque. Subsequently, we
required that Tcal & 100 K so that Tabs is not too far below the ambient temperature of about
295 K. In this regime, both Tabs and Tcal are large enough that the value of Tatm does not have a
great effect on Trec. Therefore, for simplicity, we assumed that





Tabs = 222 K

Tatm = 0 K

Tcal = 150 K

, (6)

which corresponds to a virtually transparent atmosphere and an absorber that is about 222/295 =
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75.3% opaque. Substitution of these values into Equation (3) gives a receiver temperature of

Trec = 152 K . (7)

Note that we use this value in all subsequent calculations for which the receiver temperature is
relevant.

1.2. Beam-Width

We used the provided software to analyze data from a five-by-five-observation raster scan across the
Sun and find that the beam-width (full-width at half-maximum) of the antenna is 5.2o in azimuth
and 6.0o in elevation.

Of course, this software does have its limitation, which become apparent when one investigates the
mathematical basis of its algorithms. In general, a single-dish antenna has some (two-dimensional)
beam-pattern. Likewise, a sky object has an angle-dependent brightness-distribution. Assuming
that the beam-pattern is stable (e.g., independent of elevation angle), the system power as a
function of sky angle is simply the convolution of the antenna’s beam-pattern with the object’s
brightness-distribution. The software, in fact, used a raster scan to measure the system power
at different angles, fit these measurements to a Gaussian distribution, and took the width of this
distribution along each axis (i.e., azimuth and elevation) to be the beam-width of the antenna.
Even assuming that the beam-pattern of the antenna is well modeled by a Gaussian distribution,
this technique implicitly assumes that the source under observation is a point-source; it is only
under this condition that the beam-pattern is proportional to the angular distribution of system
power. When we analyzed the Sun with this software, was tacitly treated the Sun as a point source.
As the Sun in fact has a non-zero angular width of about 0.5o, it is important to understand what
impact this assumption has had on our measurements.

Assume that both the beam-pattern of the antenna and the brightness-distribution of the source
(i.e., the Sun) are well-modeled by Gaussian distributions with widths (along any one axis) of θb

and θS . Note that the particular definition of “width” (e.g., full-width at half-maximum) does
not matter so long as it is proportional to the standard-deviation of the Gaussian distribution.
Our raster scan measured the system power as a function of angular position on the sky, which
is simply a convolution of the beam-pattern and brightness-distribution. Note that two Gaussian
distributions convolve into yet another Gaussian distribution with a standard deviation that is the
quadrature sum of those of the original distributions. Thus,

θm =
√

θ2
b + θ2

S , (8)

where θm is the width of the system-power angular-distribution. While we are actually wish to
measure the beam-width θb, the software actually outputs θm. Assuming that θb and θm are both
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significantly larger than θS ,

θm = θb

√
1 +

θ2
S

θ2
b

≈ θb +
θ2
S

2θb
. (9)

Thus, the difference between the measured and actual beam-widths is about

∆θ := θm − θb ≈ θ2
S

2θb
. (10)

This corresponds to a fractional error
∆θ

θb
≈ θ2

S

2θ2
b

. (11)

To evaluate this expression for ∆θ, we assume that θS = 0.5o. Likewise, we assume that θb ≈ θm

and use our measured values of θb ≈ θm = 5.2o in azimuth and θb ≈ θm = 6.0o in elevation.
Therefore, the software’s treatment of the Sun as a point-source introduced a 0.46% error to the
azimuth beam-width and a 0.35% error to the elevation beam width.

1.3. Antenna Temperature

Let TSun be the the system temperature with the dish pointed directly at the Sun. Therefore,

TSun = Tant + Trec , (12)

where Tant is the antenna temperature resulting from this observation. Since we observed TSun to
be 3.1 Tcal, then using the assumed values for Tcal and Trec from above,

Tant = 3.1 Tcal − Trec = (3.1) (150 K)− (152 K)
Tant = 313 K .

(13)

1.4. Aperture Efficiency

The on-axis, geometric area of the aperture is

Ag = π
(

7.5 ft
2

)2 (
1 m

3.28 ft

)2

Ag = 4.11 m2 .
(14)

Let A(α, β) be the effective collecting area of the dish where (α, β) the the sky position relative to
the pointing center. We assume that A(α, β) is a two-dimensional Gaussian distribution so that

A(α, β) = η Ag e
−(log 2)

(
α2

α2
w

+ β2

β2
w

)

, (15)
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where η is the aperture efficiency and αw = 2.6o = 0.0454 and βw = 3.0o = 0.0524 are the measured
half-widths at half-maximum of the beam-pattern. Assume that the brightness-distribution of the
Sun is a uniform disc of angular radius γS = 0.25o = 0.00436. Therefore, the antenna temperature
corresponding to the pointing of the dish directly at the Sun is (1)

Tant =
S

πγ2
S

1
2 kB

∫ ∫

Sun
A(α, β) dβ dα , (16)

where this integral is taken over the disc of the Sun and S = 5.4 × 10−21 W/m2/Hz = 5.4 ×
10−21 J/m2 is the solar flux density measured by the National Oceanic and Atmospheric Adminis-
tration (NOAA) (2) on that day. Note that this equation has made implicit use of the Rayleigh-
Jeans approximation. By substitution,

Tant = S η Ag

2 π γ2
S kB

∫ γS

−γS

∫√γ2
S−α2

−
√

γ2
S−α2

e
−(log 2)

(
α2

α2
w

+ β2

β2
w

)

dβ dα

Tant = S η Ag

2 π γ2
S kB

∫ γS

−γS
e
−(log 2)

(
α2

α2
w

) [
∫√γ2

S−α2

−
√

γ2
S−α2

e
−(log 2)

(
β2

β2
w

)

dβ

]
dα .

(17)

Since the Sun has been assumed to have a circular symmetry that A(α, β) lacks, this integral is
non-trivial. There are two basic approaches to its evaluation. First, we use computer software to
evaluate the integral numerically. Second, we make simplifying assumptions about the shape of the
beam so as to evaluate the integral analytically.

1.4.1. Numerical Evaluation

Turning to Mathematica, we find that

Tant =
S η Ag

2 π γ2
S kB

(
5.96× 10−5

)
. (18)

Solving for the aperture efficiency η, we find

η = 2 kB Tant π γ2
S

(5.96×10−5)S Ag
=

(2)(1.38×10−23 J
K)(313 K)(π)(0.00436)2

(5.96×10−5)
(
5.4×10−21 J

m2

)
(4.11 m2)

η = 0.39 .
(19)

1.4.2. Analytical Evaluation

The elliptical shape of A(α, β) is the primary source of our difficulties in directly evaluating the
above expression for Tant. Thus far, we have treated the beam as being elliptical. However, since
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the eccentricity of this ellipse is relatively small, we now make the simplifying assumption that it
is circular. Subsequently,

Tant =
S η Ag

2 π γ2
S kB

∫ γS

−γS

∫ √
γ2

S−α2

−
√

γ2
S−α2

e
−(log 2)

(
α2+β2

θ2
w

)

dβ dα , (20)

where
θw =

αw + βw

2
= 2.8o = 0.0489 . (21)

As the integrand is now completely circularly symmetric, we define
{

θ2 = α2 + β2

tanφ = β/α
. (22)

Therefore, dα dβ = θ dθ dφ and

Tant = S η Ag

2 π γ2
S kB

∫ 2π
0

∫ γS

0 e
−(log 2)

(
θ2

θ2
w

)

θ dθ dφ

Tant = S η Ag

γ2
S kB

∫ γS

0 e
−(log 2)

(
θ2

θ2
w

)

θ dθ

, (23)

We define u = − (log 2)
(
θ2/θ2

w

)
so that du = − (log 4)

(
θ dθ/θ2

w

)
and θ dθ = −du θ2

w/ (log 4).
Subsequently,

Tant = S η Ag

γ2
S kB

θ2
w

log 4

∫ 0
−(log 2)(γ2

S/θ2
w) eu du

Tant = S η Ag

γ2
S kB

θ2
w

log 4

[
1− e−(log 2)(γ2

S/θ2
w)

]

Tant = S η Ag

γ2
S kB

θ2
w

log 4

[
1− e−(log 2)(γ2

S/θ2
w)

] . (24)

Based on the above values, γ2
S is smaller than θ2

w by more than two orders of magnitude. Thus, we
make the approximation that

Tant = S η Ag

γ2
S kB

θ2
w

log 4
γ2

S log 2

θ2
w

Tant = S η Ag

2kB

. (25)

Note that in this limit (where the Sun is unresolved), the equation for Tant reduces quite elegantly
to an expression that is independent of both the angular size of the Sun and the beam-width.
Solving for the aperture efficiency, we find that

η = 2 kB Tant

S Ag

η =
(2)(1.38×10−23 J/K)(313 K)

(5.4×10−21 J/m2) (4.11 m2)

η = 0.39

. (26)

It is very interesting to note that this is the same value to within our precision that we obtained
for η using numerical methods to evaluate the integral over an “ellipsoidal” beam.



– 10 –

1.5. Expected Solar Flux Density

The flux-density of the (uniform, circular) Sun is

Sν = ΩS Iν = π γ2
S Iν , (27)

where Iν is the intensity of the Sun and ΩS = πγ2
S is the solid angle subtended by the Sun. Using

the Rayleigh-Jeans approximation for Iν gives

Sν =
(

2ν2kBT
c2

) (
Ω2

s

)
=

(2)(1.38×10−23 J
K)(5800 K)(5.97×10−5)ν2

(3.00×108 m
s )2

Sν =
(
1.06× 10−40 J s2

m2

) (
ν2

)
,

(28)

where we have adopted the optical brightness temperature of the Sun T = 5800 K. Evaluating this
at ν = ν0 = 1.42× 109 Hz gives

Sν0 = 2.14× 10−22 J
m2

= 2.14× 10−22 W
m2 Hz

= 2.14× 104 Jy . (29)

Note that this is quite a bit less than the NOAA-observed value of Sν0 = 5.4× 105 Jy.

Recall that in this calculations, we treated the Sun as a uniformly bright disk with the Sun’s optical
radius and a brightness temperature of T = 5800 K. While both of these assumptions are valid
for very short wavelengths, they do not apply at λ0 = 21 cm (3). In fact, the effective radius of
the Sun increases by about a factor of 1.2 and is significantly brighter around its edge than at its
center (Figure 1). Additionally, the mean brightness temperature of the quiet Sun at λ0 = 21 cm
is about T = 105 K; during periods of intense stellar activity, this figure can increase by a factor of
100 (Figure 2). Taking these into account, a better estimate of the expected flux-density from the
(quiet) Sun is

Sν0 =
(
2.14× 10−22 J

m2

)
(1.2)2

(
105 K
5800 K

)

Sν0 = 5.3× 10−21 J
m2 = 5.3× 10−21 W

m2 Hz
= 5.3× 105 Jy ,

(30)

which is much closer to the NOAA-observed value of Sν0 = 5.4× 105 Jy.

1.6. Galactic Rotation Curve

Based on the Galactic differential rotation model (Fig. 3), we can estimate the receding velocity of
hydrogen clouds in the galactic plane for a given galactic longitude l. From the figure we see that
the line of sight intersects the ring of rotational angular velocity Ω(R) twice. This can be seen also
from using the cosine rule as shown in Fig. 4

R2 = R2
¯ + D2 − 2R¯ D cos l (31)
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where R is the galactocentric radius of the source, R¯ is the galactocentric radius of the Sun and D

is the distance between both. The equation above is a quadratic equation for D with two solutions
D1 and D2. These two distances form the triangle of sides D1, R,R¯ and angles l, α and (π− l−α)
and the triangle of sides D2, R, R¯ and angles l, β and (π− l− β) respectively according to Fig. 4.
The angles l, α and β are related by the equality: cos(β + l) = sin(α + l).

Ignoring peculiar motions and based just on the assumption that the Galaxy undergoes differential
rotation (i.e υ = υ(R) or Ω = Ω(R)), we can write the receding velocity of HI gas in the Galactic
disk relative to the Sun (the LSR) simply as

V1 = υ(R) sin(l + α)− V¯ sin l (32)

V2 = υ(R) cos(l + β − π/2)− V¯ sin l (33)

where we have just projected each velocity onto the vector defined by the line of sight. Considering
the relation between α and β, we obtain that V1 = V2, that is, the receding velocities from each
point of the ring of velocity υ(R) are indistinguishable and contribute in the same form to the HI
spectrum, unless precise distances can be provided. The situation in which this velocity contribution
can be uniquely identified is in that one where the solution to D given l is unique. This happens
at the tangent point of the circle or radius R given a line of sight l (see Fig 5). At this point,

Fig. 1.— The brightness temperature of the Sun as a function of distance from the the center for
select wavelengths [3].



– 12 –

Fig. 2.— The mean brightness temperature of the Sun as a function of wavelength (thick curve)
against black-bodies at various temperatures [3].

α + l = π/2 hence the receding velocity is a maximum. Looking for a maximum velocity is
equivalent to observing at the tangent point of a circular trajectory of radius R.

sin(l + α) = cos(l + β) = 1

⇒ V1 = V2 = Vmax = υ(R)− V¯ sin l (34)

Furthermore, being this velocity associated to a single point, we can uniquely determine its distance.
This means that, for the quadratic equation in D

D1,2 = R¯ cos l ±
√

R2¯ cos2 l + R2 −R2¯ (35)

we need that D1 = D2 i.e.,
√

R2¯ cos2 l + R2 −R2¯ = 0

⇒ 1− cos2 l =
(

R

R¯

)2

⇒ sin l =
R

R¯
. (36)
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Fig. 3.— Galactic differential rotation. For each line of sight in the first and fourth quadrants in
galactic coordinates (l, b) – i.e. the inner Galaxy – two points with the same linear velocity and
the same distance from the Galactic Center are intercepted. Without auxiliary distance indicators,
these two points are indistinguishable, introducing an ambiguity.

Hence, for galactocentric radii that satisfy R = R¯ sin l – i.e. the line of sight grazes the smallest
ring which it can get information from – the distances R, R¯ and D form a rectangle triangle as
seen in Fig. 5 and the receding velocity observed coming from that point of the galactic plane is
fully directed parallel the line of sight vector.

Unfortunately, Eq.31 does not have two solutions when R > R¯ (we would obtain a negative
distance). This means that we cannot relate the maximum measured velocity to a given distance
unless we know the distance to the source from an independent method (Fig. 6). For this reason,
quadrant 3 and 4 in galactic coordinates are of no use in the determination of the rotation curve.
Our data should be restricted to longitudes between 0◦ to 90◦ and from 270◦ to 360◦. Nevertheless,
we can derive a velocity equation valid in the second quadrant (90◦ < l < 180◦). Indeed, in Fig. 6,
we have that

V = υ(R) sinβ − V¯ sin l = Ω(R)R sinβ − Ω(R¯)R¯ sin l.

But, using the law of sines,
sin l

R
=

sinβ

R¯
.
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Fig. 4.— Geometry of the distance ambiguity. For a given line of sight – angle l – two points at
different distances will be observed to have the same projected velocity.

Hence

V =
(

υ(R)
R¯
R

− V¯

)
sin l = (Ω(R)− Ω(R¯))R¯ sin l. (37)

which reduces to Eq. 34 when sin l = R/R¯.

In a plausible rotational regime – in which Ω(R) ≤ Ω(R¯) for R > R¯ – since for the second
quadrant sin l > 0, we would expect negative radial velocities in this quarter of the Galactic plane.
Using the same reasoning, we should expect only positive radial velocities in the third quadrant
(180◦ < l < 270◦), since for this region, sin l < 0. However, this is a fragile assumption, since
different galaxies show a rotation curve that flattens at intermediate radii without decaying in a
keplerian form, as it could be expected. But even under these circumstances, we will expect very
small or negative velocities as long as the R > R¯ condition is fulfilled. But unless we know R (or
D) we can’t assign directly the measured velocity to a distance from the Galactic center. This is why
clusters, stars or other standard candles are used to construct the rotation curve of the outer milky
way, instead of neutral hydrogen. Neutral hydrogen can be used in more sophisticated analysis, with
observations covering the thickness of the galactic disk and assuming a scale height/galactocentri
distance relation.
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1.6.1. The Data

In two opportunities, HI spectra were taken using the Haystack satellite dish (Tables 2 and 3).
The beam was pointed to the Galactic plane (b ≈ 0◦) and measurements at different longitudes
were taken. Based on the arguments above, for each longitude l, the maximum velocity (maximum
redshift of the HI 21 cm line) for which emission was detected was identified as Vmax. One of the
uncertainties in this method was the evident existence of a spectral linear baseline which we did
not have time to estimate an subtract from each spectrum. In addition, the random motions of
the gas impose a limit in the accuracy with which the bulk orbital velocity can be measured. The
results are listed below.

Following the expressions below (from Eqs. 36 and 34 ), we can compute the galactocentric radius
R and the linear rotational velocity υ(R)

R = R¯ sin l (38)

υ(R) = Vmax + υ¯ sin l (39)

where the values of υ¯ = 220km s−1 and R¯ = 8.5 kpc were used to calculate the Galactic rotation
curve.

Fig. 5.— Line of sight reaching tangentially the ring of radius R.
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Table 2: Ben and Diego’s Galactic Rotation Curve Data
l Vmax Vmax + υ¯ sin l [km s−1] R¯ sin l [kpc]
0 30 30 0
8 50 80.6 1.2

14 70 123.2 2.1
30 120 230.0 4.3
49 80 246.0 6.4
60 55 245.526 7.4
95 20 239.163 8.5

110 15 221.732 8.0

Table 3: Robert and Claude-Andre’s Galactic Rotation CurveData
l Vmax Vmax + υ¯ sin l [km s−1] R¯ sin l [kpc]
0 30 30 0.0

10 55 93.2 1.5
14 80 133.2 2.1
30 120 230.0 4.3
37 110 242.4 5.1
49 90 256.0 6.4
59 60 248.6 7.3
67 50 252.5 7.8
81 30 247.3 8.4
88 20 239.9 8.5
99 10 227.3 8.4

117 5 201.0 7.6
132 5 168.5 6.3
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Fig. 6.— Observing in the Galactic second quadrant.

We have constructed rotation curves in Figs. 7 and 8 from data sets in Tables 2 and 3. We have
excluded data points in the second quadrant and we attribute positive velocity measurements to
random motions deviating from the circular rotation assumption. These measurement are very
close to l = 90◦ longitude for which we expect V ≈ 0 (see Eqs. 36 and 34) since we do not expect
non-zero motions for gas in the solar circle respect to the LSR. In that case, measurements of
Vmax ≈ 5 − 10 km s−1 are exclusively due to random motions. Thus, an error of ±10 km s−1 is
intrinsic to every measurement.

Figures 7 and 8 show a rotation curve that flattens at a radius of ∼ 4 kpc. The quantities in the
plot are strongly dependent on the values of R¯ and υ¯, the qualitative shape of the rotation curve,
however, remains unaltered if these values are varied.
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2. Haystack Project 2: Angular Size of the Sun
(led by Sarah Ballard)

We first need to establish which observations are useable. Due to cloud cover, we cannot use
data taken below an elevation angle of about 10◦. The bandwidth estimate of 60 MHz may also be
slightly incorrect; at times relatively far from where the delay was set to zero (18.5 hours), this effect
is large and makes the data untrustworthy. These constraints leave about 30 good observations.

2.1. Calculating the projected baseline length

The angle ψ between the baseline vector and the unit vector in the direction of the source, in local
coordinates, is given by Equation 40. EB is the elevation angle of the baseline and AZB is the
azimuth angle of the baseline (0◦ and 82◦ for our observations, respectively).

cos(ψ) = sin(EB) sin(ES) + cos(EB) cos(ES) cos(AZS −AZB) (1)

Fig. 7.— Rotation curve from Table 2 excluding observations beyond a longitude of 90◦.
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Fig. 8.— Rotation curve from Table 3 excluding observations beyond a longitude of 90◦

We can convert the measured elevation and azimuth angles of the sun, ES and AZS , to projected
baselines by the relationship Dproj = D sinψ. Fig. 2.1 gives a plot of projected baseline as a
function of UT time for the observations that were useable. The kink in Dproj at a UT of around
19 is due to an offset in ψ that occurred when the telescope was repointed mid-observation.

2.2. The effect of the finite bandwidth on the fringe visibility

We know from lecture that the additional path length for light between the two antennas will
result in a sinc contribution to the visibility, of the following form, where Vuncor is the visibility
function with no delay compensation (as was the case for this experiment), V is the actual visibility
function, ∆ω is the bandwidth (2π∆ν, where ∆ν is 60 MHz, the given filter width), and D cosψ

is the propagation path difference for a given observation. We know that Dr. Rogers turned the
delay compensation to be zero at UT=18.5 hours, so the cosψ at that time needs to be subtracted
from the argument, in order to make the delay function equal to one at 18.5 hours.

Vuncor = V
sin(D(cosψ − cosψ18.5)∆ω/2c)

D(cos ψ − cosψ18.5)∆ω/2c
(2)
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Fig. 9.— Projected baseline versus time, for useable observations.

Alternatively, instead of multiplying the model visibility function by this delay function, we can
divide the measured visibility by the delay. We took this approach, so the visibility function model
would be simpler.

2.3. Fitting to the function of a uniformly bright disk

As derived in lecture, the visibility function for a given intensity I(θ) is given by the following,
where J0 is the zeroth order Bessel function, and q is the baseline distance D divided by λ.

V (q) = 2π

∫ θ

0
I(θ)J0(2πqθ)θ dθ (3)

For I(θ) constant to some θC and zero elsewhere (that is, a uniformly bright disk), then the visibility
is given by Equation 43, where J1 is the first order Bessel function and ID is the intensity of the
disk.

V (q) = 2πIDθ2
C

J1(2πqθC)
(2πqθC)

(4)

We can verify this visibility by using the fact that V (q = 0) should equal the total flux. Evaluating
this V (q) at 0, we find that it is indeed equal to IDπθ2

C , the expected flux from a disk of intensity
ID and solid angle πθ2

C .

After dividing the measured visibility Vuncor by the sinc delay, as in Equation 2, we can compare
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the expected visibility function V with what was observed. By solving for the best-fit θC , we can
measure the angular radius of the sun. We carried out a simplified χ2 analysis to find the best-fit
θC , where χ2 is defined below:

χ2 =
N∑

i=1

(modeli − datai)2

σ2
i

(5)

Here modeli is the best guess for the visibility function at a given point, and datai is the actual
data at that point. While we do have the errors associated with each observation, for this fit we
elected just to set σi = 1 at all points. Since the errors are less than a percent of the data, they
probably do not represent the true error. This may be due to systematic errors in receiver gain
drift or pointing. We fit for two degrees of freedom: the angular radius of the sun θC , and the
amplitude a of the J1 Bessel function, so that the model was given by Equation 6, where we have
replaced q by Dproj/λ. Fitting for the amplitude was necessary because the measured visibility
function is not normalized to peak at one.

modeli = a | J1(2πDiθC/λ)
(2πDiθC/λ)

| (6)

Because the measured visibility is only positive, we took the absolute value of the model visibility.

Then we searched the χ2 space for the θC and a for which the χ2 was minimized. We found the
best-fit θC to be 16.58 ± 0.01 arcminutes, and the best-fit a to be 586 ± 2. The best-fit visibility
function, with data overplotted, is shown in Fig. 10.

The total optical angular size of the sun on Nov. 9, 2007 was 32.3’. From Fig. 1, the radius of the
sun at 1 cm wavelength is about 1.05 times the optical radius of 16.15’, and the radius of the sun
at 10 cm is about 1.4 times the optical radius. At around 2.5 cm (the wavelength at 12 GHz), we
might expect a radius of around 1.05 times the optical radius of the sun, or 16.95’. Our measured
radius of 16.58’, about 1.03 times the optical radius, is fairly close to this value.

2.4. Effects of limb brightening

To create a model visibility function that includes limb brightening, we can assume an intensity
function which behaves as a constant out to some θC , and add to it a delta function ring at θC

of some brightness IR. Plugging this model intensity into Equation 42, we obtain the visibility
function given by Equation 46. Here we have defined IR to be the intensity of the ring, which has
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Fig. 10.— The best fit visibility function with data overplotted. The best fit angular size of the
sun was measured to be 33.2’, about 3% larger than the optical angular size of 32.3’.

some thickness θR starting at θC , the radius of the sun (although I have evaluated the visibility of
the ring as though it were a delta function at θC , in reality the ring will have a finite thickness).
We see again that this V (q = 0) is equal to the sum of the fluxes from the disk and the ring, as it
should be (note that J1(x)/x evaluated at zero is 0.5, and J0(x) evaluated at zero is 1).

V (q) = 2πIDθ2
C

J1(2πqθC)
(2πqθC)

+ 2πIRθCθRJ0(2πqθC) (7)

We can normalize this visibility by defining a parameter f , the ratio of the fluxes from the ring and
the disk, given by Equation 47. Then the normalized visibility is given by Equation 48.

f =
Fring

Fdisk
=

2πIRθCθR

πIDθ2
C

(8)

V (q) =
2J1(2πqθC)/(2πqθC) + fJ0(2πqθC)

1 + f
(9)

Just to visualize how the limb brightening term behaves in comparison with the standard visibility
function, we have overplotted it in Fig. 11 for a fraction f of 25% (very high, just so it appears
clearly on the plot). From this plot, it’s clear that a contribution from limb brightening may account
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for the fact that the null of the measured visibility function never goes completely to zero. Although
our measurement errors are not reliable enough to perform a meaningful χ2 analysis to test the
limb brightening hypothesis, we can at least set an upper bound on the limb brightening fraction
f . A larger f than this value would result in a higher null than observed. Fig. 12 shows an inset
of the original best-fit visibility to the data, with an approximate limb brightening contribution
overplotted at an f of 5%. A fraction much higher would clearly be inconsistent with the two lowest
observations.

We can compare this result to Fig. 1 to check its validity. Equation 47 reduces to Equation 49 for
r defined to be the thickness of the ring as a fraction of solar radius.

f =
2rIR

ID
(10)

Fig. 1 is defined in terms of brightness temperature, which is linearly related to intensity, so we
can directly compare a ratio in I to ratios in temperature inferred from the figure. For 10 cm
observations in Fig. 1, the temperature as a function of radius shows a slight peak, at total radius
of the sun, of about 110% the temperature in the disk. This peak is spread over a width of about
5% the radius of the sun. From Equation 49, we would then expect a limb brightening fraction
f of around 11% or so at 10 cm. However, at 1 cm, the figure shows almost no evidence of limb
brightening. An upper limit of about 5% is therefore reasonable for observations at the intermediate
wavelength of 2.5 cm.

Fig. 11.— The bestfit visibility function with the extra limb brightening term (at a fraction of 25%
of the disk intensity), just to compare their behaviors.
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Fig. 12.— Inset of best-fit visibility function, with maximum limb brightening contribution (at 5%)
overplotted. It’s clear that a limb brightening fraction any higher would be inconsistent with the
observations.

2.5. Fitting parameters vs. inverse Hankel transform

An alternative to fitting model parameters to the data might be directly taking the inverse Fourier
transform of the measured visibility (actually a Hankel transform here, since the source is assumed
to be spherically symmetric). However, this alternative is not feasible due to the finite extent
(in baseline space) of our data. Taking the inverse Fourier transform of only a known piece of
the visibility function will return something unrecognizable. Even if the observed visibility was
a perfect “Jinc” function over some finite range in baseline space (where “Jinc” is J1(x)/x), the
resulting inverse Hankel transform would have a “ringing” effect of sidelobes.

3. Haystack Project 3: Measurements of the Visibility of a Single and Double
Source

(led by Robert Harris and Lauranne Lanz)

In this project, our goal was to measure the response of a two-element interferometer to a pair of
fluorescent light bulbs that emitted predominantly at ν = 12 GHz. Below, we describe the basic
theory behind this project, present the setup and procedures, and then give an analysis of the data.
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3.1. Theory of Two-Element Interferometry

Assume that one is observing two point-like sources on the sky with a two- element interferometer.
For concreteness, this situation is illustrated in Fig. 13. Assume that the double source consists of
two delta functions of intensity, located at (α0, β0) and at (−α0,−β0) in the sky plane such that
the angle the line connecting the two sources makes an angle θ with the α-axis. So, the intensity
is given by:

I(α, β) = I0(δ(α− α0, β − β0) + Rδ(α + α0, β + β0))

where R is the ratio of the intensities of the two sources. The visibility function is then just given
by the integral of the intensity over the sky:

V (u, v) =
∫

sky
I(α, β) exp[2πi(uα + vβ)]dαdβ

= I0(exp[2πi(uα0 + vβ0)] + R exp[−2πi(uα0 + vβ0)])

= I0(exp[πi∆φ(u cos(θ) + v sin(θ))] + R exp[−π∆φi(u cos(θ) + v sin(θ))])

= I0 exp[πi∆φ(u cos(θ) + v sin(θ))](1 + R exp[−2π∆φi(u cos(θ) + v sin(θ))])

where ∆φ is the angular extent of the double source (i.e. b/c) and α and β have been expressed
in terms of θ and the angular extent of the source. It is clear that this will never be zero unless
R = 1. Therefore, we fix R = 1, and compute |V (u, v)|2 = V †V .

|V (u, v)|2 = I2
0 (1 + R2 + 2R cos(2π∆φ(u cos(θ) + v sin(θ))))

It is clear that this expression is zero when the argument of the cosine is an odd multiple of π. So,
to compute the first null, we take:

2π∆φ(u cos(θ) + v sin(θ)))) = π

→ Ψ =
1

2∆φ

Ψ =
c

2b

where Ψ is defined to be u cos(θ) + v sin(θ). Taking θ = 0 (the double source aligned along the
α-axis in the sky), we find that the first null occurs at u = c

2b → x = λc
2b . So, the separation for

first null is given by

∆D =
λc

2b

Because approximating the fluorescent light bulbs in this experiment as point sources may not be a
good approximation, we must also consider other possible shapes the lights might be considered to
be when viewed from the interferometer. The two most likely to be good models for the distribution
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of brightness for a single light bulb are the uniform disk and the uniform annulus. Fortunately,
because the brightness distribution of two uniform disks (or annuli) at a separation b is just given
by the convolution of the brightness of a uniform disk (or annulus) at the origin with the brightness
distribution of the pair of delta functions, as outlined above, the visibility of two uniform disks
or annuli is just given by the product of that of the pair of delta-functions with that of a single
uniform disk or annulus.

For a uniform disk with angular radius R, the visibility function takes the form

V (u) =
2J1(2πuR)

2πuR
.

For a thick annulus (one for which ∆R, the annulus thickness, is not much less than R), the inner
radius, one must numerically integrate to obtain

V (u) =
1

R2

∫ R

R−∆R
2rJ0(2πur)dr

Note that this converges to the visibility of the uniform disk in the limit ∆R → 0.

Fig. 13.— Illustration of the plane of the sky when observing a double source.
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3.2. Experimental Setup and Procedures

To carry out our measurement of the visibility function, we used the setup shown in Fig. 14 that
was provided to us by the staff at the Haystack observatory.

Fig. 14.— Circuit diagram for project 3. Obtained from VSRT Memo 025.

We note that although figure marks the distance between the feeds and the lamps to be 46 inches,
our experiment had a different value, approximately 52 inches. Also, given that there were three
feeds on each of the LNBF, we determined which was the active feed by blocking each in turn and
seeing whether the values measured by the computer program when the lights were on changed.
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The active feeds, hereafter referred to as the receivers, were placed side by side.

This experiment had three phases. For each phase, the distance between the receivers and the lamps
was obtained. For each data point within a phase, information regarding the distance between the
lamp centers, the distance between the receiver centers and the temperature value outputted by
the computer program were recorded.

In phase 1, we measured the visibility function for a single fluorescent light. One of the two lamps
was turned off and placed at a distance of 52.5 inches from the receivers. Its inner and outer radii
were measured. Measurements of receiver separation and temperature from the computer program
were recorded for twelve different receiver separations.

In phase 2, we measured the visibility function for the double fluorescent light source. The receivers
were placed 52.5 inches from the lamps. The lamps were separated by 4.125 inches. The receivers
were separated an increasing amount. At each step, the separation between the receiver centers
and the temperature given by the computer program were recorded. The receiver to be moved was
alternated. Further, as the separation became larger, the receivers were also tilted a bit towards
the lamps so that the sources would still be within the beam. Twenty-one data points were taken.

In phase 3, we repeated the measurement performed in phase two, but by an alternate method.
The receivers were placed 52.25 inches from the lamps and separated by 3 inches. The lamps,
rather than the receivers, were then separated an increasing amount. At each step, the separation
between the lamp centers was measured and the temperature given by the program was recorded.
Twenty-five data points were taken.

After the data were taken for all three phases and analyzed, it was realized that there was a
zero-point visibility that corresponded to noise-floor or bias for the interferometer. All data have
been corrected for this by subtraction of the noise-floor from the measured visibilities, i.e. V 2

corr =
V 2

measured −B2 where B = 12.7 K.

3.3. Data and Analysis

3.3.1. Measurement of Single Source Visibility

The uncalibrated power (measured in Kelvin) detected for a single fluorescent light bulb was
recorded as a function of the baseline separation between the two feeds. The distance between
the bulb and the center of the baseline between the feeds was 52.5± 1/16 inches. The outer radius
of the bulb was 1.31 inches and the inner radius was 1.0 inches.
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Modelling the source as a uniformly bright disk, we fit the data for the single source visibility to
the following form:

Vbest−fit(d) = a

∣∣∣∣
J1(bd)

bd

∣∣∣∣ (1)

where d is the length of the interferometer baseline, a = 124.2 ± 1.7 K, b = 0.184 ± 0.004 in−1,
where the errors on the best-fit parameters are 1-σ errors. This corresponds to a frequency of
ν = 13.95 ± 0.28 GHz using the formula 0.609/∆φ = x0ν/(bc), where ∆φ is the angular extent of
the source, b is the fit parameter above, and x0 is the location of the first null. However, it is of note
that the lightbulb resembled more closely a square lit at the edges than a uniformly illuminated
circle. Therefore, approximating the fluorescent bulb as a square instead of a circle, the correct
formula to use is 0.5/∆φ = x0ν/(bc), which gives an estimate of the frequency at 11.46±0.23 GHz.
It is of note that both results are roughly consistent with the nominal frequency of the light, i.e.
12.0 GHz. However, the reduced χ2 statistic for this fit was 15.01 with 10 degrees of freedom, which
is a formally unacceptable result.

Due to the large χ2 statistic for our model, we examined the residuals, defined as the deviation
away from the fit expressed in terms of the error on each point. In fact, in Fig. 15(b), one observes
a somewhat sinusoidal variation in the residuals of the fit, throwing some doubt onto our fit. One
possible origin for the sinusoidal variations in the residuals is a relatively weak double source that
is being detected by the feeds. It is possible that twin fluorescent lights on the ceiling could be the
cause of this anomalous result. If the lights were at a large angle from the symmetry axis of the
interferometer, then the gains of the feeds at that angle are expected to be small. Therefore, the
lights might cause a small amplitude ripple in the visibility function. One might hope to be able to
test this; however, this would require two additional parameters in the fit: that for the amplitude
of the visibility fluctuation, and the product of the angular size of the source and the wavenumber
of the radiation emitted from the fluorescent lights. Since we do not know the wavenumber of the
extra sources with any accuracy, we cannot get a constraint on the angular size of the source, thus
limiting our ability to confirm the hypothesis that ceiling lights are responsible for this effect.

To further explore the possible sources of large deviations away from the predicted visibility ampli-
tude, we explored the possibility that the source might not be well-modelled by a uniformly bright
circle or a square, but rather a circular annulus. We attempted to see if the source could be more
accurately described by a circular annulus by performing the numerical integration mentioned in
the previous subsection for the single source. We found that the sidelobes for the source should
have been approximately 40% for a uniformly bright annulus. Our sidelobes are quite a bit lower
than 40%, so it seems as though the ring description is less than optimal for our data.
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Fig. 15.— Measured and fit visibilities for a single fluorescent lamp. The top plot, (a), gives the
measured (crosses with errors) and fit (solid line) power expressed in Kelvin as a function of baseline
separation. The bottom plot, (b), gives the residuals of the fit expressed in terms of the estimated
error on the measurements.

3.3.2. Measuring the Visibility as a Function of Baseline Separation

Having obtained an estimate of the center frequency of the inpinging radiation, we now turn to
the second phase of our project, the measurement of the visibility function of the double source
as a function of the baseline distance of the receivers. In this part of the experiment, we kept the
separation of the two sources constant at 4.13 inches and the distance of the center of the baseline
to the sources was kept at 52.5 inches, but we incremented the baseline by moving the detectors
apart. We fitted the data to cosine term, modulated by a first order Bessel function divided by its
argument (the so-called “jinc” function). The data, fit, and residuals are shown in Figure 16.
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Fig. 16.— The top plot, (a), gives the measured (crosses with error bars) and fit (solid line)
uncalibrated powers for a double source as a function of baseline separation. The bottom plot, (b),
gives the residuals of the fit expressed.

The fit has the functional form

V (d) =
∣∣∣∣A cos(Bd)

J1(Cd)
Cd

∣∣∣∣ , (2)

where d is the baseline separation and where the best-fit parameters are A = 292.5 ± 4.0, B =
0.227± 0.002, and C = 0.193± 0.005.

Repeating the analysis performed in the first part of the project, we find the best-fit frequencies
derived from the argument of the jinc function to be given by 12.78±0.35 GHz. From the argument
of the cosine, we can check the measurement of the wavelength of the light from the fluorescent
sources. The first nulls of the cosine occur at arguments of π/2 and 3pi/2, which, given first-nulls
of 6.92 ± 0.05 in and 20.76 ± 0.14 in, both yield a frequency of 10.85 ± 0.11 GHz. We note that,
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while the result from the argument of the jinc function is formally consistent with both the quoted
frequency of the emitted light and the estimate of it from the visibility measurements of the single
source, the results from the argument of the cosine in this measurement are only roughly consistent
with them. The χ2 statistic for this fit was formally unacceptable, with a reduced χ2 of 1.82 for 18
degrees of freedom.

One possible clue for this quite remarkable inconsistency derives from the geometry of the setup.
The light bulbs’ length was substantially more than their radius. Therefore, the solid angle sub-
tended by the lights at the distance of the receivers increased as the baseline increased, the limiting
case of infinite separation corresponding to the entire emitting length of the bulb being visible.
Since the residuals on the fit after a certain baseline separation are all positive (and large), it is
probable that the changing aspect of the light with respect to the receivers played a large role in
degrading the quality of the data. An possible improvement to the experimental setup would be
to add a cover for the side of the lights so that changing the angle to the light source does not
significantly alter the total amount of light received at the detector.

3.3.3. Measuring the Visibility as a Function of Source Separation

In the final phase of the project, we measured the effect of changing the source separation on the
response of the receivers. For this, we used a distance from the center of the baseline to the sources
of 52.5 inches with a baseline of 3 in. The data from these measurements are presented in Figure
17, in which we show the data along with a fit to a cosine term, representing the visibility of two
sources that are moving as apart while the baseline of the interferometer is fixed, along with their
residuals. Note the absence of a jinc modulation because the baseline is fixed.

The best-fit visibility as a function of source separation is given by

Vbest−fit(s) = A |cos(Bs)| , (3)

where the best fit parameters are given by A = 142.2 ± 5.9 K, and B = 0.175 ± 0.002 in−1.
For this value of B, the corresponding best-fit frequency is given by 11.62 ± 0.17 GHz, which is
barely consistent with, the quoted value of ∼ 12 GHz. The quality of the fit is, again, formally
unacceptable, with a reduced χ2 statistic of 2.11 with 22 degrees of freedom.

3.4. Discussion of Results

As we see in the previous subsection, the results for the determination of the visibility function of
the double light source seem to match that which is expected from theory. The visibility of a double
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Fig. 17.— Measurement of the visibility of the double source as a function of source separation.
The top plot, (a), gives the measured (crosses and error bars) and fit (straight line) uncalibrated
powers for a double source as a function of source separation. The bottom plot, (b), gives the
residuals of the fit.

source is expected to vary as the cosine of the angle between the sources and as J1(x)/x where x
is a (dimensionless) baseline separation. Also, this latter dependence has been confirmed for the
single source visibility as well. One may notice that our determination of the characteristic noise
temperature in the system (the uncalibrated power with no light impinging on the interferometer)
is remarkably constant at about 13 K.

However, problems remain. The determination of the frequency of the light varied according
to what we measured (single vs. double source) and how we measured it (baseline vs. source
separation). No good explanation has been found, although contamination by extra light in the
room is a likely scenario that, unfortunately, cannot be fit for due to uncertainties in the source
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Table 4: Frequency Determinations from Each of the 3 Experiment Phases
Phase Jinc ν (GHz) Sinc ν (GHz) cos ν (GHz)

1 13.95± 0.28 11.46± 0.23 N/A
2 12.78± 0.35 10.49± 0.29 10.85± 0.11
3 N/A N/A 11.62± 0.17

size and characteristic wavelength.
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4. APPENDIX 1

4.1. Projects for the Haystack Trip

Dear Class,

On this coming Thursday, Nov 1, we will go to Haystack for a set of three ”hands-on” projects. I
think you will find them very interesting and educational! They have been developed over the last
ten years as part of Haystack’s educational mission, supported by the NSF. The last two projects
are new as of this year!

We will have three very knowledgeable staff members from the MIT/Haystack Observatory assisting
with the experiments: Dr. Alan Rogers, Dr. Prethi Pratap, and Mr. Phil Shute.

The prime instrument of the Haystack Observatory is a 37-m antenna, which is currently undergoing
a major upgrade to operate at 3 mm wavelength. We may be able to see the antenna, which is
inside the giant radome.

Alan Rogers told me that they have been picking some local interference at 1420.37 MHz. He is
trying to identify it and shut it down. Also, the sun is in behind some geostationary satellites,
which also seem to be causing some problems. Hence, you may get to see first hand the problems
that radio astronomers have with man-made interference at the low frequency end of the spectrum.
Notice that we will be using the unique band around the 21-cm line, which enjoys a very high level
of legal protection from interference (There is not supposed to be ANY man-made radiation in the
band 1420-1427 MHz)!

Logistics:

*** PLEASE LET ME KNOW RIGHT AWAY WHETHER YOU PLAN TO ATTEND, so I can
finalize some of the detailed logistics. Josh Younger cannot come, so we do not have his car. DOES
ANYONE ELSE HAVE A CAR??? If not I will rent a van.

We will go regardless of the weather, although it looks like the weather will be perfect (a typical
New England Day in the Fall). Remember that water and water vapor cause hardly any attenuation
below 2 GHz. Hence, the atmosphere is essentially transparent even during heavy rain. However,
if it does rain, bring rain gear because we will be moving around outside.
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We will leave the classroom A building entrance at 12:30 sharp and be back by 6 pm. Haystack is
in the town of Westford Mass, about 36 miles from the CfA. We will have two vehicles: my car,
and (probably) a rented van driven by Meredith. That will handle 12 people. I will bring cookies
and drinks.

*** IN THE DESCRIPTION OF THE PROJECTS BELOW, YOU WILL NOTE THAT **AD-
VANCED PREPARATION ** IS NEEDED FOR EACH PROJECT. PLEASE DIVY UP THE
QUESTIONS TO BE RESEARCHED AMONG YOURSELVES. HOWEVER, **** EVERYONE
**** NEEDS TO KNOW THE ANSWERS BEFOREHAND. ALSO, PLEASE READ THE THREE
ATTACHED ARTICLES, WHICH PROVIDE BACKGROUND FOR THE PROJECTS.

**** TAKE CAREFUL NOTES OF YOUR MEASUREMENTS. YOUR WRITE-UP OF THE
RESULTS WILL BE NEXT WEEK’S HOMEWORK.

Three Projects:

1. PROJECT 1: Calibration measurements and observations with a 7.5 foot diameter radio tele-
scope at 1420 MHz.

A. Measure the receiver temperature using the calibrated noise diode and a room temperature
absorber.

B. Measure the beamwidth and aperture efficiency of the antenna by observing the Sun.

C. Measure the aperture efficiency on either or both Casseopeia A and Cygnus A. (We may not be
able to do this element if the interference is high because the signal strengths are low.)

D. Measure a spectrum of the 21 cm HI line toward the inner galaxy.

A longitude of 30 degrees is probably a good place to look. Look at the attachment srt 20.webarchive
to understand how the velocity range of the spectrum a specific longitude tells you what the
rotational velocity of the galaxy is at one galactic radii.

The spectral analysis of the signal is done in ”firmware” on the processing computer. The bandwidth
is 1.25 MHz, and there are 1024 spectral channels. The analysis is not done via autocorrelation
function but by direct Fourier transformation of the receiver voltage. No special weighting function
is applied, so for the case of uniform weighting the spectral response function will be a sinc2 function.
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PREPARATION:

Read the description of the Small Radio Telescope (SRT) in the attached Sky and Telescope article
from 1996 and the attachment entitled srt 20.webarchive.

A. What is the expected beamwidth of the telescope at 1420 MHz?

B. The receiver temperature will probably be about 50K and the bandwidth is 1.25 MHz. What will
the approximate continuum sensitivity be in terms of degrees K and Jy for a 1 second integration
time?

C. What will the sidereal time be at 3 pm EDT on Nov 1 at Haystack (longitude = 70W)? (This
time will be equal to the right ascension of a source transiting then.) (hint, search Google if
necessary)

D. What are the coordinates of Cas A and Cyg A and their flux densities at 1420 MHz. Note that
the flux density of Cas A is decreasing at a rate of 0.7 percent/year, so a correction will be needed
if you find a very old source of information. Will they be above the horizon in the afternoon?

E. What is the temperature and flux density of the sun at 1420 MHz? What is its angular size?

G. What is the exact rest frequency of the 21 cm HI line and what are the approximate magnitudes
of the velocity corrections for the rotation of the earth, the orbital motion of the earth, and the
peculiar motion of the sun?

H. What is the total bandwidth and spectral resolution at 1420 MHz of the spectrometer in terms
of km/s? Is the total velocity width likely to be enough to cover all the galactic hydrogen?

2. PROJECT 2: Measure the fringe visibility of the sun using a two element interferometer at 1420
MHz.

PREPARATION

Read attached memo: VSRT 30.pdf

A. Assume the sun is a uniformly bright circular source. What is the approximate Visibility
Function of the Sun at 1420 MHz? What is the baseline spacing in meters for the first null in the
visibility function? (see class notes, October 30, 2007). It may be possible to measure deviations
from the uniformly bright circular model.

3. PROJECT 3. Play with a lab demonstration setup of a two element interferometer.
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The source is two florescent lights (which emit copious amounts of microwaves) to simulate a double
radio source .

PREPARATION

Read attached memo: VSRT 25.pdf

A. What is the Visibility Function for a double source? What baseline is needed to reach the first
null in the visibility function if the source component separation is b cm and the distance from the
source to the interferometer is c cm?

This is gonna be fun!!!!!!!!!!!

Jim
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5. APPENDIX 2

Astronomy 218

HAYSTACK PROJECT REPORT (aka PS 6)
Due November 13, 2007

5.1. Guidelines for report on measurements made at Haystack on Nov 1, 2007

. Give relevant equations and show data. Please submit final report by Tuesday, Nov 13 at class
time and we will discuss the results in class. Make enough copies so everyone has one to refer to.

5.2. PROJECT 1. Calibration and Measurements with a 7.5 ft radio telescope at
1420 MHz.

1. Compare the system temperature measurements derived from the “Y factor” method of
putting an ambient temperature absorber in front of the feed with that derived from us-
ing the noise diode (with its “calibrated” noise temperature of 100K).

I believe that the two techniques do not agree very well in their results. Discuss the possible
reasons for this. Which do you “believe?”

2. What is the beamwidth of the antenna derived from the sun map? How much is the correction
for the finite size of the sun?

3. Calculate the antenna temperature of the sun based on the cal temperature.

4. Compare the result of No. 2 with the one derived if the temperature of the cal is rescaled to
make the system temperatures in No. 1 equal.

5. What is the aperture efficiency based on the solar flux density of 5.4 × 105 Jy we obtained
from the web for Nov 1?

How much error does the point source approximation for the sun with respect to the antenna
beam introduce in the efficiency calculation?

6. What is the expected flux of the sun based on a brightness temperature of 5800K and an
angular size of 30 arcminutes (appropriate for wavelengths shortward of 1 cm)?

Note how the discrepancy in the system temperature estimates in No. 1 carries over to a
discrepancy in the estimated aperture efficiencies (No. 5). In the sociology of the radio
astronomer community, the people responsible for the receivers favor calibrations which yield
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lower system temperatures, at the expense of lower antenna aperture efficiency, while those
responsible for the antenna performance favor calibrations that yield higher aperture efficiency
at the expense of the higher system temperatures.

There were several HI profile obtained toward different longitudes. Calculate if possible a
piece of the galactic rotation curve, or at least galactic rotation for one radius!

As you can see from SRT memo 20, if you point the telescope along the galactic plane at
longitude l, then the line of sight passes closest to the galactic center at the “subcentral
point” where the galactic radius is Rs. The highest velocity gas wrt the sun will be at the
subcentral point, with a velocity Vs = Vmax. The sun is at radius Ro and is moving with an
orbital speed of Vo. Subtracting the sun’s velocity from the velocity of gas at Rs, it is easy
to show that

V (Rs) = Vmax + Vo sin l , (1)

where Rs = Ro sin l .

Assume Vo = 220 kms and Ro = 8 kpc.

The above analysis holds for longitudes in the “first quadrant,” e.g., l between 0 and 90
degrees.

5.3. PROJECT 2. Measure the angular size of the sun with the two element
interferometer.

Some critical parameters for the interferometer are its center frequency of 12.825 GHz, and band-
width of 60 MHz. For the azimuth of the baseline, AZB, you should get about 82◦, with a baseline
length of D = 3.82 meters. The baseline length actually changed a bit as a function of azimuth,
but ignore this effect.

Alan Rogers sent the two files with the fringe amplitude measured on the sun at 1 second intervals.
These were rather large files. I edited them and averaged the data to 6 minutes. The files for day
number 305 (our day, November 1) and the previous day (304) are attached.

The columns are:
1. index
2. number of data samples averaged
3. UT time in hrs
4. azimuth angle in degrees
5. elevation angle in degrees
6. fringe amplitude in uncalibrated units.
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The data sets have several pecularities.

At some point below 10 degrees elevation the fringe amplitude decreases rapidly because of atmo-
spheric absorption. This effect is worse on Nov 1 because of the heavy cloud cover. For day 304
the antennas were not tracking the sun precisely before about 18.5 hrs. You should disregard this
data or bump it up by a factor to match the data, in the mean, on day 305. The interferometer
had one fixed delay cable to match the signal delays for a point reached around 18.5 hours UT. For
the early part of the tracks you will have to compensate for the delay loss, which is the

sin(2πB cosψ/c) ,

as derived in class on Nov 6.

1. Calculate the projected baseline length for each data point. The one dimensional estimate
from the difference in azimuth angles of the baseline and sun is a good start. But please do
the calculation accurately. If ψ is the angle between the baseline vector and the propagation
vector to the source then

cosψ = sin EB sinES + cosEB cosES cos(AZS −AZB) , (2)

where
EB =elevation angle of baseline vector (assume 0)
ES =elevation angle of sun
AZB =azimuth angle of baseline
AZS =azimuth angle of source.

Remember that I proved a similar relation for cosψ in celestial polar coordinates in class on
Nov 6. The projected baseline is then

Dp = D sinψ , (3)

where D is the distance between the two antennas that you measured.

2. Calculate the effect of the finite bandwidth of the interferometer (60 MHz) on the fringe
visibility. Rogers set the delay compensation to be zero at about UT = 18.5 hrs. Use the

3. Fit the visibility data (V vs Dp/λ) (corrected for the sinc delay function) to the function of a
uniformly bright disk. Don’t use data when the since function correction becomes large, e.g.,
more than say a factor of 2. What is the angular diameter of the radio sun? How does this
size compare with the optical diameter? (Consult figure of solar profile and flux vs frequency
in the Kraus book, which was distributed during the visit).

4. Can you see any effect of limb brightening in the visibility?

5. Could you Fourier transform the visibility data (actually Hankle transform under assumption
of circular symmetry) to produce a radial profile of brightness?
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5.4. PROJECT 3. Measure the visibility function of a simulated double source
made from two florescent lights.

I know that various sets of data were taken, e.g. fixed source separation, with measurements of
fringe amplitude vs baseline; and variable source separation with fringe amplitudes measured at a
fixed baseline.

1. Show that the setup confirms the expected response to a double source based on the Fourier
transform relation between visibility and baseline.

IMPORTANT NOTE. In both experiments 2 and 3, it is the magnitude of the fringe visibility that
is measured (NOT the square of the visibility). Hence this measurement is positive definite. To get
the complex visibility it would be necessary to measure the phase of the visibility, which we were
not set up to do. If we were, we would have been able to show that the visibility changed sign on
alternate extrema.
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