MIT Haystack - Institutional Activities / Plans

Chester Ruszczyk
Haystack-NRAO Technical Meeting
Oct. 26 2006
Advantages of e-VLBI

- Bandwidth growth potential for higher sensitivity
 - Network bandwidth potential growth will far exceed recording capability for e-VLBI
- Rapid processing turnaround
- Increased reliability – remote stations
 - Performance monitoring
 - A control capability in near real-time
- Lower Costs
 - Automate operations
 - Eliminate shipping of storage media
 - Near real-time processing
 - Reduction of recording-media pool (millions of $’s!)
State of Networking Environment

• 10 Gbps currently standard backbone speed
 – Within 2 years 100 Gbps available
• Global VLBI Antenna Network Connections
 – Europe, Australia, Japan moving rapidly ahead (up to 10Gbps)
 – US needs a coherent plan
• Availability of point-to-point optical services
 – Up to 10Gbps
 – On demand connections - reservation based
• e-VLBI is an excellent globally distributed network application.
 – Bandwidth
 – Flexible transport requirements
 – Stresses the latest networking research
Ongoing

• EGAE (Experiment Guided Adaptive Endpoint)
 – Verifying / merging so that it is used in all e-transfers.
 • Integrating Wetzell e-transfers software
 – Testing / Debugging GUI front end
 – Deploy software to BONN

• Transport Protocol Research
 – Proposed follow on to EGAE – NSF, rejected.
 – Working / Evaluating other transport protocols in trials
 NyAlesund – VFER, UDT
Ongoing (cont)

• VSI-E
 – Testing phase
 – Trial with Japan Jan. 07 JGNII Demo.

• BOSSNET Upgrade
 – Completion scheduled for Jan 07 ????

• International Collaboration
 – Univ. of Manchester
 – Onsala
 – Sunet
 – Uninett
 – Creat-net (Italy – initial discussions, collaborations)
Next Steps

• E-transfers
 – Intensives Ny-Alesund (Nov. 2006)
• 1Gbps real time trial – 2007
 – Based on completion of BOSSNET
• GLOWNET Upgrade – 10Gbps ~ 2007
• Continue search for funding opportunities
 – Support of 8Gbps - 2010
Next Steps

• Continue ramp up of actual e-VLBI experiments
 – Real-time transfers at 2 Gbps and higher (Mark5B++)
 – Support of both real time and non-real time efforts
 – Help transition telescopes to e-VLBI capabilities:
 • Recent requests from: China, South America, etc.

• Pursue work on transport protocols
 – Take advantage of dedicated light path characteristics

• Initiate development of coherent US plan in collaboration with other VLBI stake holders.
Conclusions

• e-VLBI has huge potential for new science and significantly improved operational efficiency

• International in nature and requires
 – Cooperation from all interested parties
 – Standardization

• US last-mile connectivity continues to be a challenge