NRAO VLBI ROADMAP

Craig Walker
VLBA FUTURE

• Senior Review results not yet known
• Guess VLBA will survive but need non-NSF funding of part of operations
• Need future improvements
 – Current capabilities getting less interesting
“Mapping the Future of VLBI Science in the U.S.”
- The “Lonsdale - Taylor” report
- A good guide to where the US VLBI effort should go
 - Had significant community input and scientific justification
- Essentially everything that NRAO hopes to do with the VLBA is in the report
- This talk will summarize the recommendations and discuss the status and prospects for implementation
NEAR TERM
(2004-2006)

• Switch to Mark5. Done (but < 20 on correlator)
• Increase bandwidth to 1 Gbps. Barely started.
 – Path to 512 Mbps understood - more disks.
 – Significant changes needed to get to 1 Gbps.
• Equip Arecibo and GBT with Mark5. Done.
 – Formed the HSA
• Upgrade 22 and 43 GHz receivers, 86 GHx septum polarizers, and 3mm antenna performance. Not done.
 – 22 GHz will be done in 2007.
• Investigate WVR and dual Frequency Observations. Not done. WVR moving slowly on VLA.
MID TERM (2007-2009)

• Increase bandwidth to 4-16 Gbps.
 – Getting to 4 Gbps will be a main topic of discussion at this meeting
 • Needs new BBCs, data transmission system, and correlator
 – 16 Gbps a goal but much more expensive
 • New LO/IF and some new receivers
• Implement mm VLBI at LMT, CARMA, SMA, and ALMA.
 – Other than ALMA, is this an NRAO task?
LONG TERM (2010-2013)

• Transition to fiber links.
 – Need the technology
 – Need business model for fiber access
 • This may be the hard part.

• SKA
 – VLBI and linked interferometry no longer distinct
 – Much technology development needed
 – VLA/VLBA future depends somewhat on just what SKA turns out to be - eg frequency range
OTHER RECOMMENDATIONS

• Significantly improve VLBI postprocessing software.
 – CASA (was AIPS++) may do it, but VLBI is not a current CASA priority
 – Incremental AIPS improvements on-going

• Community support
 – User friendly tools
 • Pipelines and scripts
 – Money. Starting student support as at GBT.
4 Gbps by 2010: BBC and SAMPLERS

- A major goal is to get to 4 Gbps by ~2010
- Can use current dual 500 MHz IFs.
- Need new hardware for sampling and channelization.
 - Fast sampler and digital filters
- Choices:
 - EVLA hardware
 - Noto digital BBC
 - Haystack/Berkeley digital BBC
 - Something new
4 Gbps by 2010
DATA TRANSMISSION

• Need more data transmission capacity than Mark5A or Mark5B
• Recording choices:
 – Dual Mark5B+
 – Other Mark5 derivative
 – Other
• eVLBI
 – Need fiber access
4 Gbps by 2010
CORRELATOR

- Current correlator poor beyond 512 Gbps and cannot go beyond 1 Gbps
 - Needs multi-pass or max 10 stations for 1 Gbps
- Choices for wideband correlator:
 - EVLA WIDAR correlator
 - Has 5 extra station inputs. Can do 20 stations at 4 Gbps.
 - Software correlator
 - Fast development and highly flexible
 - Expensive for high bandwidth
 - New hardware correlator
 - Berkeley FPGA style?
 - Small WIDAR?
HAYSTACK COLLABORATION

• Primary opportunities
 – Wide bandwidth recording systems
 – eVLBI

• Possible developments
 – Digital BBC
 – Correlator

• mm VLBI
 – Use of Haystack antenna?
 – Outfitting non-NRAO antennas
End of Roadmap
EVLA WIDAR correlator is designed with enough delay and rate capacity for VLBI.
Station cards can take VSI input:
- May need to have chips populated.
Phase I correlator has 32 station inputs:
- VLA only needs 27. 5 Extra.
- Each input can do:
 - 1 station at 16 GHz (8 GHz per polarization)
 - 2 stations at 4 GHz (2 GHz per polarization)
 - 4 stations at 1 GHz (500 MHz per polarization)
The 5 extra stations provide a much enhanced capability over the current VLBA correlator.
ADVANTAGES OF USING THE WIDAR CORRELATOR

• Correlator being built anyway
• No need to maintain a separate correlator
• High capacity into the future
 – 20 stations at 1 GHz (4 Gbps)
 – 10 stations at 4 GHz (16 Gbps)
• If EVLA2 is built, boundary becomes fuzzy
 – Shared antennas, entangled scheduling …
• Further unifies EVLA and VLBA operations
DISADVANTAGES OF USING THE WIDAR CORRELATOR

- VLBA correlator operations would have to be at the VLA site
- The capacity is high, but is capped
 - Beyond 1 GHz, limited to just the VLBA unless take out some VLA antennas or expand correlator
- Extra stations may be in demand for other uses such as LWA or SKA prototypes.
- May be difficult to expand in the future
 - Parts may no longer be available