NEXT WEEK I PLAN TO THINK ABOUT THE OPTION OF USING TECHNOLOGY THAT ISN'T YET AVAILABLE.
VLBI Sampling Techniques

Research by
Kerry Shores
Mike Revnell

Presented by
Steven Durand
and the
Electronics Division
Teledyne RAD004

- Teledyne purchased the Rockwell Sampler Division

- The RAD004 is used in the EVLA project
 - 3 bit sampler
 - 4.096 GHz clock

- Advertised small signal analog bandwidth - 10 GHz
6 Bit 4 GS/s Analog to Digital Converter

Features

- 6-Bit Resolution
- Up to 4 GS/s Sampling Rate
- Integrated Dual Track and Hold
- 0.5 Vpp Differential Full Scale Range
- 6 GHz Full Power Bandwidth (min)
- DNL: 0.5 LSB
- INL: 1 LSB
- ENOB: 4.5 Typical (DC to 4 GHz)
- No Missing Codes
- LVDS Compatible, Adjustable CML Output
- Grey Code Output
- Over-Range Indicator Output
- Integrated Pseudo Random Pattern Generator
- 2 Clock Cycles Latency
- 88 Pin QFP Package
- 7.5 W Power Dissipation
- 1 to 4 Demultiplexed Binary Output when Coupled with RDX004M4
- ROHS Compliant

Figure 1 - Functional Block Diagram
EVLA DTS Module

- 3-bit Teledyne Sampler
- 4 GHz Sampler Clock
- 2 GHz Digital Bandwidth
Sampling Concept

2nd Nyquist zone | 3rd Nyquist zone | 4th Nyquist zone | 5th Nyquist zone

4.000 GHz
Sample Clock
Degradation of Signal to Noise

- $D_{SNR} = 10 \log \left(\frac{B_{EA}}{\text{Bandwidth}} \right)$

 $B_{EA} = \text{Equivalent noise bandwidth}$

 $D_{SNR} = 10 \log \left(\frac{10.5 \text{ GHz}}{2 \text{ GHz}} \right) = 7 \text{dB}$

- Anti-aliasing are required

* R. Vaughan – Theory of Band-pass Sampling
2.5 GHz Sine Wave
No anti-aliasing filter
11.7 GHz Sine wave
No anti-aliasing filter

18 dB Theoretical Limit
Sampler Characteristics

- Sample clock frequency can be constant
- One set of digital filters and processing firmware can be used for multiple nyquist zones
- Anti-aliasing filter design is challenging
- Nyquist boundary nulls
- Only one zone can be sampled at a time
ATA Wideband feed

- 32+ functional antennas
- 0.5-11 GHz
- Flat frequency response
- ATA uses traditional analog RF converters (4 each)

Credit David DeBoer
MaCOM Microwave Switch

- Band-pass filters
- 2-20 GHz
- 2” X 2.2”
- Advanced ceramics
- Good temperature stability
VDBE Compatible
Conclusion

- Reduce the LO system
 - Block conversions for higher frequencies
- May reduce analog noise
- Compatible with digital or analog transmission systems
- May be lower cost
Add anti-aliasing to Receiver