Pluggable TCP Congestion Avoidance Modules for eVLBI

Mark Kettenis, Arpad Szomoru
Joint Institute for VLBI in Europe
kettenis@jive.nl
Outline

- Introduction
- C-TCP
- Pluggable Congestion Avoidance Modules
- A simple module for eVLBI
- Measurements
- Conclusions
Datatransport for eVLBI at JIVE

Boundary conditions:
- Mark4 correlator
- Real time

Which means:
- Correlation within a second after observation
- Timely delivery of data is important

Exceedingly more difficult at higher data rates
- Packet loss increases
- Fixed size hardware buffers so timing gets more critical
- Power-of-two datarates
Datatransport for eVLBI at JIVE

Mark4 datarates
- 128Mb/s Routine for science observations
- 256Mb/s Possible in most "weather" conditions
- 512Mb/s If we get lucky
- 1Gb/s Impossible with std 1Gb/s ethernet

Bandwidth seems to be available, yet we can’t always transfer data at 512Mb/s.
Using TCP for eVLBI

Probably not the optimal choice
 - exponential backoff
 - retransmission

Unfortunately...
 - Mark5A UDP doesn’t really work
C-TCP

Developed by CHEETAH project for circuit-switched networks

- Patches to Linux 2.6.11 that
 - Disable slow start completely
 - Fix the congestion window at the bandwidth delay product
- For connections marked by userland app

- Problems
 - Needs web100
 - Not available for other kernels

- Benefits
 - Application control possible

http://cheetah.cs.virginia.edu/
Linux Pluggable Congestion Avoidance Modules

○ Minimally implement
 ▶ u32 ssthresh(struct sock *sk);
 ▶ u32 cong_avoid(struct sock *sk, u32 ack, u32 rtt, u32 in_flight, int good_ack);
 ▶ u32 min_cwnd(struct sock *sk);

○ Optionally implement
 ▶ u32 rtt_sample(struct sock *sk, u32 usrtt);
 ▶ u32 undo_cwnd(struct sock *sk);
 ▶ And more...

○ Access to "struct sock" with all details about the connection
 ▶ destination address & port
 ▶ source address & port
Linux Pluggable Congestion Avoidance Modules

Benefits
○ Only the sender needs to be modified
○ No need to reboot...but don’t lock yourself in.
○ Stable interface?

Disadvantages
○ No application control
○ Must run Linux 2.6.13 or later
○ Documentation missing?
A simple module for eVLBI

- Based on the ideas from C-TCP
 - Very small slow start threshold
 - Fix congestion window
- Only activated when destination is Mark5A data port
- "Standard" Reno for other connections
- Bandwidth specified when module is loaded
- Less than 50 lines of code
Measurements

Bandwidth measurements using iperf between Amsterdam and JIVE

Mark5’s directly connected to 1Gb/s links
○ Tests between two Mark5s
○ With "background" traffic from a third Mark5

Conclusions
○ Aggressive Congestion (non)-Avoidance can give an improvement
○ Connectivity provided by SURFNet is too good
○ The Netherlands is too small for meaningful tests
Measurements

Bandwidth measurements using iperf between Medicina and JIVE
Measurements

Bandwidth measurements using Mark5A failed
 ○ Stable version of Mark5A code doesn’t support Linux 2.6.13
 ○ Development version seems to be broken

Datatransport up to 256Mb/s seemed to work
Conclusions

- Pluggable modules provide interesting flexibility
- Fluctuations in throughput are smaller
- Evaluation for real eVLBI remains to be done
- Application level changes needed
Thanks

Many thanks to

Guiseppe Maccaferri
Radiotelescopi di Medicina
Istituto di Radioastronomia