VLBI Developments

“Down under”

Tasso Tzioumis,
24 October 2012
Talk Outline

• Introduction to the LBA
• Telescope Developments – more antennas
 • AuScope; ASKAP; Ww; South Africa
• DAS/Recorder developments
 • ASKAP DAS/recorder
 • CABB/DFB3
 • Xcube recorder + DAS
• Correlation – DiFX
• Networks
• E-VLBI
• NTFN
• Summary
Long Baseline Array (LBA)

- Telescopes in Australia / Asia-Pacific / Southern hemisphere
 - CSIRO (ATCA, Mopra, Parkes); U.Tasmania (Hobart, Ceduna)
 - NASA (Tidbinbilla)
 - ASKAP; + NZ; AuScope
 - + South Africa (9000 km baselines) – Hart (& KAT-7)
 - + Telescopes in Asia Pacific: Japan, China, Hawaii, VLBA,…

- Frequency range: 1-22 GHz
- Disks (XRAIDs) & eVLBI - up to 1Gbps (4 x 64 MHz)
 - All (almost) data transfers electronically – Petabyte store

- Software correlator(s) - DiFX
 - Curtin University Supercomputer cluster - CUPPA
 - “Real time” correlation from disks & eVLBI
 - e-VLBI correlators at ATNF (Parkes; ATCA)

- Open VLBI network - proposals 15 June & December
 - ** Includes e-VLBI proposals **
LBA Sensitivity calculator (Java online)
Long Baseline Array (LBA)

Radioastronomy: A special window to the universe
Tasso Tzioumis
Development #1: New Antennas

- **Australian SKA Pathfinder (ASKAP)**
 - 36 x 12m antennas + Phased-Array feeds and multiple beams
 - VLBI with single antenna + single pixel feeds (L & X bands)
 - Recorded-VLBI & e-VLBI (at 512 Mbps)
- **AuScope** for IVS (geodesy)
 - 3 x 12m antennas; Hobart, Katherine, Yarragadee
 - S/X geodetic systems + DBBC + MK5B
- **NZ Warkworth** antenna – IVS (see Tim’s talk)
 - 12m dish + DBBC + MK5B
- **South Africa** (Jonathan’s talk)
 - Hart 26m + 15m SKA prototype (used in 2012)
 - KAT 7 (7 x 12m) – tests scheduled
 - MeerKat
Radioastronomy: A special window to the universe
Tasso Tzioumis
LBA Imaging capability improvements

- “LBA” 6 ant 1700km 40 uJy/beam (Ceduna)
- +Auscope +ASKAP 9 ant 3450km 110 uJy/beam
- +NZ 10 ant 5360km 110 uJy/beam
- +South Africa 11 ant 10440km 110 uJy/beam

Enhanced imaging; “zoomed arrays”; very high resolution
Future telescope developments - sensitivity

• ASKAP tied array beams
 • Multiple synthesised beams (4+)
 • Up to 36 antennas \rightarrow equivalent to $\sqrt{36 \times 12m} = 72m$ antenna
• NZ 30m antenna – existing coms antenna (see Tim’s talk)
• GMRT VLBI
 • Inner 16 antennas \rightarrow $4 \times 45m = 180m$ antenna!!!
• South Africa
 • Tied array KAT 7 ? \rightarrow 23m equivalent
 • Tied MeerKat ? \rightarrow $\sqrt{64 \times 13m} = 104m$ equivalent!
• SKA VLBI ??
 • Southern hemisphere arrays...

***Sensitivity key factor \rightarrow at present try BW increases
DAS/Recorder systems - existing

- **LBA DAS** (Developed for S2 VCR system)
 - Digital filtering – 2 x 64 MHz input IFs (2 pols) → 512 Mbps
 - ATNF (At, Mp, Pks) with 2 DAS/station → 1024 Mbps
 - + COTS Computers + Disks (mainly XRAID systems)
 - Remote disk recording + eVLBI

- **Mk4/Mk5/VLBA DAS** + MK5A or MK5B recorders
 - Ho, Pk, Tid (older geodetic systems) – {16 MHz bands}

- **DBBC + Mk5B recorders**
 - IVS systems – AuScope & NZ -- {16 MHz bands}

- **ASKAP system** - (“Bruce” Curtin recorder)
 - COTS computer + Disks
 - Commercial sampler card (Signatec PX1440)
 - 2 x 64 MHz bands → 512 Mbps (could go x2)
DAS/Recorder systems - development

- **DFB3** boards – 1 GHz BW
 - Non-VLBI operation at Parkes → need VLBI mods
 - Initial tests successful BUT no manpower!! (ASKAP) - deferred

- **CABB wideband DAS** - 2 GHz BWs x 2 pols
 - ATCA array – 2 freq chains x 2 GHz BW x 2 pols x 16-bits
 - Up to now using only 64 MHz sub-band → old DAS
 - Tied array in 32 x 64MHz (for full 2 GHz) x 2 pols
 - Output directly on 10 GigE ports
 - Have FPGA engineer and current project!!
 - Mods underway!! Basic functionality already added!!
 - Tests within weeks. Basic system commissioning within months!
 - Outputs into large 10 Gbps switch(already bought) – then record or eVLBI
 - Potentially record full 2 GHz of BW → Need 10 GigE recorders!
Xcube Recorders

• Commercially available and supported systems – 4 acquired
 • **Notable characteristics:**
 • - Ethernet recorder
 • - 4x10 Gbps ethernet inputs
 • - 16 Gbps recording rates advertised
 • - 4x8 disks modules connected externally. Up to 128 TB of spinning storage
 • - Library functions to read the data back off disk
 • **Tests so far:**
 • Streamed data in VDIF/UDP format from existing recorder at ATCA to an Xcube in Sydney at 512 Mbps. Successfully copied the data off the Xcube and correlated in DIFX
 • Sent dummy VDIF data from one Xcube to another with a direct connection at 8 Gbps. For a 10min test we received 94 million packets with 2400 missing packets.
Xcube - StreamX-VLBI

• Digital receiver board based on FPGA commercial digitisers
 • 4 Channels x 512 MHz each
 • polyphase (32 channels) filter bank
 • quantizers to provide 2-bit output stream to recorder
 • Setting and control via the Xcube recorder

• Units yet to be tested
• May replace current generation of LBA DAS systems

• Visit to Xcube this afternoon
Correlation - DiFX

- **DiFX** software correlator - (from Adam Deller at Swinburne)
 - (Ref: Deller et al. 2011, PASP, 123, 275 (DiFX-2))
 - Adopted internationally (NRAO, Bonn, LBA,…)
 - Accepts many formats (LBA, MK5, VDIF) & real or complex samples
 - Very flexible and versatile

- DiFX 2.0 can correlate mixed bands e.g 64 vs 4x16 MHz
 - Extremely important for LBA (many DAS systems)
- Adopted for all e-VLBI or recorded-VLBI correlation in LBA
 - Even real-time fringe testing

- * Data Compatibility no longer an issue!!
- ** Transformed the way we do VLBI
ICRAR-Curtin Correlator Facility

• Primary correlator for the Australian Long Baseline Array

• CUPPA
 – 20 node (160 core) beowulf cluster
 – Gb ethernet
 – >150 TB attached storage
 – Runs DiFX under the Espresso processing pipeline

• Future plans

• Pawsey Centre for SKA Supercomputing
 • Under construction in WA
 – 150 teraflops (currently)
 – scaling up to petaflop in 2 years

• Tests of DiFX on new hardware
 • to be carried out during 2012/13
Networks: AARNet Network

Updates: 40 Gbps 100 Gbps
NTFN - National Time and Frequency Network

• Dissemination of time and frequency via optical fibre
 • Use of existing data networks
 • Need bi-directional amplifiers – special equipment
 • Using AARNet research network

• NTFN collaboration project
 • Funded via government research grants
 • Basic research/development underway
 • Astronomical testing by VLBI observations
 • On CSIRO network between Mopra and ATCA

• Research important for SKA – participation in SKA developments
 • Work-package involvement
e-VLBI

- Continue developments in LBA & Internationally
 - Already part of operational VLBI
 - Up to 1 Gbps

- 10 Gbps connection Parkes – ATCA established
 - Planning eVLBI tests at high data rates (8 Gbps)
 - Need new DAS system(s) to provide data streams

- 10 Gbps astronomy connectivity across Australia
 - Network development underway
 - Need access to HPC – Pawsey computers in Perth

- NEXPReS involvement
 - Bandwidth-on-demand & Distributed correlation
Summary

• The LBA is the main extensive VLBI network in the South
 • Open access; eVLBI capabilities
• Augmented imaging capabilities from new antennas
 • Up to 11 telescopes at some bands
 • Future tied-arrays for sensitivity
• Developments to wide-band (2 GHz BW) and GigE recording
 • ATCA CABB system in active development
 • Xcube recorders for multiple 10 GigE capability
 • Xcube DAS under testing
• DiFX software correlator adopted -
 • Mixed BW correlation
 • Supports many input formats – no compatibility issues
• High speed fibre networks in construction
• Research in time and frequency distribution over fibre
Thank you

CSIRO Astronomy and Space Science
Tasso Tzioumis
VLBI Coordinator

t +61 2 9372 4350
e tasso.tzioumis@csiro.au
w www.atnf.csiro.au