Imaging Supermassive Black Holes with the Event Horizon Telescope

Kazu Akiyama
(MIT Haystack Observatory / JSPS Fellow)

On Behalf of the EHT Imaging Working Group:
Michael Johnson, Andrew Chael, Ramesh Narayan (CfA/SAO),
Katie Bouman (MIT CSAIL), Mareki Honma (NAOJ) et al.
Radio Interferometry: Sampling Fourier Components of the Images
Radio Interferometry:
Sampling Fourier Components of the Images

Image
Radio Interferometry:
Sampling Fourier Components of the Images

Image

Fourier Domain
(Visibility)
Radio Interferometry: Sampling Fourier Components of the Images

Image

Fourier Domain (Visibility)

Sampling Process (Projected Baseline = Spatial Frequency)

(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)
Radio Interferometry:
Sampling Fourier Components of the Images

Image

Fourier Domain (Visibility)

Sampling Process (Projected Baseline = Spatial Frequency)

(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)
Radio Interferometry: Sampling Fourier Components of the Images

Sampling is NOT perfect

Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch
Interferometry Imaging: Observational equation is *ill-posed*

\[
\begin{align*}
\mathbf{Y} & = \mathbf{A} \mathbf{X} \\
\mathbf{Y} & = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_M \end{pmatrix} \\
\mathbf{A} & = \begin{pmatrix} \exp(i2\pi u_1 x_1) & \exp(i2\pi u_1 x_2) & \cdots & \exp(i2\pi u_1 x_N) \\ \exp(i2\pi u_2 x_1) & \exp(i2\pi u_2 x_2) & \cdots & \exp(i2\pi u_2 x_N) \\ \exp(i2\pi u_3 x_1) & \exp(i2\pi u_3 x_2) & \cdots & \exp(i2\pi u_3 x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \exp(i2\pi u_M x_1) & \exp(i2\pi u_M x_2) & \cdots & \exp(i2\pi u_M x_N) \end{pmatrix} \\
\mathbf{X} & = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_N \end{pmatrix}
\end{align*}
\]
Interferometry Imaging: Observational equation is *ill-posed*

\[
\mathbf{Y} \quad = \quad \mathbf{A} \mathbf{X}
\]

- Sampling is NOT perfect
- Number of data \(M \) < Number of image pixels \(N \)
Interferometry Imaging: Observational equation is *ill-posed*

- Sampling is NOT perfect
- Number of data $M < $ Number of image pixels N
- Equation is *ill-posed*: infinite numbers of solutions

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
\vdots \\
Y_M
\end{pmatrix} =
\begin{pmatrix}
\exp(i2\pi u_1 x_1) & \exp(i2\pi u_1 x_2) & \cdots \\
\exp(i2\pi u_1 x_N) \\
\exp(i2\pi u_2 x_1) & \exp(i2\pi u_2 x_2) & \cdots \\
\exp(i2\pi u_2 x_N) \\
\exp(i2\pi u_3 x_1) & \exp(i2\pi u_3 x_2) & \cdots \\
\exp(i2\pi u_3 x_N)
\end{pmatrix}
\begin{pmatrix}
X_1 \\
X_2 \\
X_3 \\
\vdots \\
X_N
\end{pmatrix}
\]
Interferometry Imaging: Observational equation is *ill-posed*.

- Sampling is NOT perfect
 - Number of data $M <$ Number of image pixels N
- Equation is *ill-posed*: infinite numbers of solutions
- Interferometric Imaging:
 - Picking a reasonable solution based on a prior assumption
Approach 1: Sparse Reconstruction
Approach 1: Sparse Reconstruction

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error.
Approach 1: Sparse Reconstruction

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

\[
\min_x \|x\|_0 \quad \text{subject to} \quad \|y - Ax\|_2^2 < \varepsilon
\]
Approach 1: Sparse Reconstruction

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

\[
\min_{x} \|x\|_0 \quad \text{subject to} \quad \|y - Ax\|_2^2 < \varepsilon
\]

L_p-norm:

\[
\|x\|_p = \left(\sum_i |x_i|^p \right)^{\frac{1}{p}} \quad (p > 0)
\]

\[
\|x\|_0 = \text{number of non-zero pixels in the image}
\]
Approach 1: Sparse Reconstruction

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error.

\[
\min_{x} \|x\|_0 \quad \text{subject to} \quad \|y - Ax\|_2^2 < \varepsilon
\]

Number of non-zero pixels (point sources)

\[\|x\|_p = \left(\sum_i |x_i|^p \right)^{\frac{1}{p}} \quad (p > 0)\]

\[\|x\|_0 = \text{number of non-zero pixels in the image}\]
Approach 1: Sparse Reconstruction

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

\[
\min_{x} ||x||_0 \quad \text{subject to} \quad ||y - Ax||_2^2 < \varepsilon
\]

Number of non-zero pixels (point sources)

Chi-square: Consistency between data and the image

L_p-norm:
\[
||x||_p = \left(\sum_{i} |x_i|^p \right)^{\frac{1}{p}} \quad (p>0)
\]

\[
||x||_0 = \text{number of non-zero pixels in the image}
\]
Approach 1: Sparse Reconstruction

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

\[
\min_x \| x \|_0 \quad \text{subject to} \quad \| y - Ax \|_2^2 < \varepsilon
\]

Number of non-zero pixels

Data

Obs. Matrix

Image

Computationally very expensive!!
(It can be solved for \(N < \sim 100 \))

- \(L_0 \) norm is not continuous, nondifferentiable
- Combinational Optimization
Approach 1: Sparse Reconstruction

CLEAN (Hobgom 1974) = **Matching Pursuit** (Mallet & Zhang 1993)

Computationally very cheap, but highly affected by the Point Spread Function

Dirty map: FT of zero-filled Visibility

Point Spread Function: Dirty map for the point source

Solution: Point sources + Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)
Approach 1: Sparse Reconstruction

CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

Computationally very cheap, but highly affected by the Point Spread Function

Dirty map:
FT of zero-filled Visibility

Point Spread Function:
Dirty map for the point source

Solution:
Point sources + Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)
Approach 1: Sparse Reconstruction

Computationally very cheap, but highly affected by the Point Spread Function

CLEAN is problematic for the black hole shadows?

Ground Truth

- **Model**

CLEAN

- **Fabian Baron+**
- **Chael+2016 ApJ**
- **Akiyama+2016b,c, submitted to ApJ**
Approach 1: Sparse Reconstruction

L1 regularization (LASSO, Tibishirani 1996)
Approach 1: Sparse Reconstruction

L1 regularization (LASSO, Tibishirani 1996)

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function
Approach 1: Sparse Reconstruction

L1 regularization (LASSO, Tibishirani 1996)

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{x} \|x\|_1 \quad \text{subject to} \quad \|y - Ax\|_2^2 < \varepsilon$$
Approach 1: Sparse Reconstruction

L1 regularization (LASSO, Tibishirani 1996)

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

\[
\begin{align*}
\min_{\mathbf{x}} & \quad ||\mathbf{x}||_1 \quad \text{subject to} \quad ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon \\
\end{align*}
\]

Equivalent

\[
\begin{align*}
\min_{\mathbf{x}} & \quad \left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l||\mathbf{x}||_1\right) \\
& \quad \text{Chi-square Regularization on sparsity}
\end{align*}
\]
Approach 1: Sparse Reconstruction

L1 regularization (LASSO, Tibishirani 1996)

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

\[
\min_x \| x \|_1 \quad \text{subject to} \quad \| y - Ax \|_2^2 < \varepsilon
\]

\[
\min_x \left(\| y - Ax \|_2^2 + \Lambda \| x \|_1 \right).
\]

- Reconstruction purely in the visibility domain:
 Not affected by de-convolution beam (point spread function)

- Many applications after appearance of *Compressed Sensing* (Donoho, Candes+)
Approach 1: Sparse Reconstruction
Application of LASSO (Honma et al. 2014)

(Honma, Akiyama, Uemura & Ikeda 2014, PASJ)
Approach 1: Sparse Reconstruction

For Smoother Image: sparsity on gradient domain

Total Variation: Sparse regularizer of the image in *its gradient domain*

\[
\|x\|_{tv} = \sum_i \sum_j \sqrt{|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2}.
\]

\[
\|x\|_{tv} = \sum_i \sum_j (|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2).
\]

\(L_1 + TV\) regularization (Akiyama et al. 2016b,c, Kuramochi+ in prep.)

\[
\min_x \left(\|y - Ax\|_2^2 + \Lambda_l \|x\|_1 + \Lambda_t \|x\|_{tv} \right)
\]

(Sgr A*; Kuramochi, Akiyama, et al. in prep.)
Approach 1: Sparse Reconstruction
For Smoother Image: sparsity on gradient domain

Total Variation: Sparse regularizer of the image in its gradient domain

(Akiyama et al. 2016b,c, Kuramochi+ in prep.)

Fractional Polarization

(Sgr A*; Kuramochi, Akiyama, et al. in prep.)
Approach 2: Maximize the Information Entropy

Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)
Approach 2: Maximize the Information Entropy

Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

\[
\min_x (\|y - Ax\|_2^2 - \lambda f_{\text{entropy}}(x))
\]

\[
f_{\text{entropy}}(x) = - \sum_i x_i \log \left(\frac{x_i}{m_i} \right)
\]
Approach 2: Maximize the Information Entropy

Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

\[
\min_x \left(\|y - Ax\|^2 + \Lambda f_{\text{entropy}}(x) \right)
\]

\[
f_{\text{entropy}}(x) = - \sum_i x_i \log \left(\frac{x_i}{m_i} \right)
\]

- **Compared with CLEAN:**
 1. Better fidelity for Smooth Structure
 2. Better optimal resolution

Approach 2: Maximize the Information Entropy

Maximum Entropy Methods (MEM; Frieden 1972; Gull & Daniell 1978)

- **PolMEM**: Extension of MEM to full-polarimetric Imaging (Chael+16)

Approach 3: Machine-learn Distribution of Image Patches
A patch prior (CHIRP; Bouman et al. 2015)

Simple Example

(courtesy of Katie Bouman)
Approach 3: Machine-learn Distribution of Image Patches
A patch prior (CHIRP; Bouman et al. 2015)

Simple Example

(courtesy of Katie Bouman)
Approach 3: Machine-learn Distribution of Image Patches
A patch prior (CHIRP; Bouman et al. 2015)

Simple Example

Probability Distribution of "Multi-scale Patches"

Can be used as "A Prior Knowledge"

(courtesy of Katie Bouman)
Approach 3: Machine-learn Distribution of Image Patches
A patch prior (CHIRP; Bouman et al. 2015)

CHIRP: Continuous High Image Resolution using Patch priors
Reconstruct the image so that it maximizes consistency with a machine-learned patch prior distribution

(courtesy of Katie Bouman)
Approach 3: Machine-learn Distribution of Image Patches

A patch prior (CHIRP; Bouman et al. 2015)

CHIRP: Continuous High Image Resolution using Patch priors

Reconstruct the image so that it maximizes consistency with a machine-learned patch prior distribution

(courtesy of Katie Bouman)
Summary

- All state-of-the-art imaging techniques developed for the EHT have shown much better performance than the traditional CLEAN.

- These techniques can be applied to any existing interferometers

- These techniques would be applicable to similar Fourier-inverse problems (e.g.) Faraday Tomography (RM Synthesis)
 Mostly equivalent to linear polarimetric imaging

M87 jets (Application to VLBA data)
- Color: CLEAN (3mm)
- Lines: Sparse Modeling (7mm)