Enabling system science: Ionospheric conductivity

Assimilative approach
Bring diverse data together
Estimate of uncertainty
Particularly effective in addressing modeling shortcomings

![Image of 2D and 3D diagrams showing ionospheric conductivity](image-url)
Conductivity critical to high-latitude geospace system

Background - Modeling Improvements - Future/Discussion

Electromagnetics governed by conductivity

\[\mathbf{J} = \tilde{\sigma} \cdot \mathbf{E} \]
Where is conductivity modeling currently?

Background - Modeling Improvements - Future/Discussion
1. Difficulty specifying auroral component

Maxwellian energy particle precipitation assumption

and

Robinson formulas (Robinson et al., [1987])

\[
\Sigma_p = \frac{40E}{16 + E^2} \Phi_E^{1/2}
\]

\[
\frac{\Sigma_H}{\Sigma_p} = 0.45(E)^{0.85}
\]
1. Difficulty specifying auroral component

Maxwellian energy particle precipitation assumption

and

Robinson formulas (Robinson et al., [1987])

\[\Sigma_p = \frac{40E}{16 + E^2} \Phi_E^{1/2} \]

\[\frac{\Sigma_H}{\Sigma_p} = 0.45(E)^{0.85} \]

2. Height-integrated

\[J = \tilde{\sigma} \cdot E \]

\[\int_h \sigma dh = \Sigma \]
Application of modeling improvement:

1. Studying local features in global analyses;
2. Facilitating closer agreement between diverse observations; and
3. Connecting these results to the broader picture: Significance to NEROC community
Optimal Interpolation (OI) technique: 3 Steps

1. Characterize the variability

Optimal Interpolation (OI) technique: 3 Steps

1. Characterize the variability

2. Accumulate observations

Optimal Interpolation (OI) technique: 3 Steps

1. Characterize the variability

2. Accumulate observations

3. Optimal interpolation

How can we quantitatively test the conductance models?
How can we quantitatively test the conductance models?

~800 km

Ionosphere

SuperDARN radar

Field-aligned currents

AMPERE

\[\text{O}_2^+, \text{N}_2^+, \text{O}^+ \]
\[\Delta B = A_{\text{mean}} + H_A \alpha_A \]

Magnetic Potential

\[A = \sum \text{SuperDARN} \]

AMPERE to predict SuperDARN

\[A = A^{(mean)} + H_A \alpha_A \]

\[\text{Magnetic Potential} \]

\[\Sigma \]

\[\text{SuperDARN} \]

\[\Delta B \]

\[\text{Local Obs.} \]

\[\text{Global} \]

Conductances from *Cousins et al. [2015]*

Empirical + Robinson = C2015

Conductances from OI output M2016
Background - Modeling Improvements - Future/Discussion
Median Absolute Deviations (MADs)

Total $\Delta B \rightarrow V$ MADs [m/s]

- C2015: 684.2
- M2016: 382.7

AE [nT]

November 30, 2011

Solar Wind

CF

$\Delta B \rightarrow V$ [m/s]
Median Absolute Deviations (MADs)

Background - Modeling Improvements - Future/Discussion

Solar Wind CF

ΔB → V
[m/s]

ΔB → V

November 30, 2011

Total ΔB → V MADs [m/s]

- C2015: 684.2
- M2016: 382.7
- M2016+SSUSI: 359.1

AE [nT]

-- M2016
-- C2015

11/4/16

McGranaghan - NEROC Symposium
Median Absolute Deviations (MADs)

Background - Modeling Improvements - Future/Discussion

Solar Wind

ΔB → V

[m/s]

November 30, 2011

Total ΔB → V MADs [m/s]

C2015: 684.2
M2016: 382.7
M2016+SSUSI: 359.1

Reconciling observations

AE [nT]

Solar Wind

CF

ΔB → V

[AE]

November 30, 2011

Total ΔB → V MADs [m/s]

C2015: 684.2
M2016: 382.7
M2016+SSUSI: 359.1

Reconciling observations
Application of modeling improvement:

1. Studying local features in global analyses;
2. Facilitating closer agreement between diverse observations; and
3. Significance to NEROC community
Application of modeling improvement:

1. Studying local features in global analyses;
2. Facilitating closer agreement between diverse observations; and
3. Significance to NEROC community

Data assimilation at intersection of data and modeling (current understanding)

This community uniquely positioned to take advantage

Email: Ryan.M.McGranaghan@Dartmouth.edu
Application of modeling improvement:

1. Studying local features in global analyses;
2. Facilitating closer agreement between diverse observations; and
3. Significance to NEROC community

Data assimilation:
- Utilize diverse observational system
- Perform system science
- Conduct multi-scale analyses

Email: Ryan.M.McGranaghan@Dartmouth.edu