Jonathan Weintroub
for the SWARM Development Team
NEROC Symposium, MIT-HO
4 November 2016

SWARM: a 32 GHz Correlator and Phased Array for SMA
Behold the Power of SWARM

Glen

LO Frequency: 343 GHz
RMS: 0.49 mJy (contours=3,4,5 sigma)
Beam=0.92x0.63''

A block taken in dual-rx SWARM-only mode on Sunday night. The tau phase was OK considering we are in EXT. Both the 345s and 712 USB (LO = 343 GHz). The pointing on Antenna 7 was poor, and the 400s on Antenna 7 were basically unusable.

Though the calibration I find that the rms of *each* 6 GHz wide blocks around 1 mJy when I image them individually (the 400 images of the flagging of Antenna 7). Combining all the data into a full dirty map with an rms of 0.55 mJy (550 uJy!). Uncertain because Uranus was resolved on most baselines and I did not assume a scale factor of '1' for baselines with no useful Uranus and scale factors of 1-1.3, and I am not 100% certain that the tsys correction for SWARM is as good as it used to be for ASIC.

The target (as calibrated) has a flux of 2.35 mJy and is detected at the 4.3 sigma level. This would have been around a 2.5 sigma detection with just the ASIC.

For comparison, the online sensitivity calculator (assuming 1 mm DWM) gives 1.03 mJy per 2
Shed a tear . . .

The ASIC correlator was shut down about a week ago, it served SMA well (presentation time is far too valuable for a minute of silence)

Mark 4 XF ‘CB’
(Canaris ASIC from late 1990’s)

90 CBs in system
32 ASICs/CB = 2880 ASICs/system

~25 kW digital+analog+cooling

IF downconverter and sampler assembly (C2DC)

8 antennas x 6 ‘blocks’ x 2 pols = 96 assemblies

96 x 4 chunks/block = 384 IF channels and ADCs

• Highly hybridized, 4 GHz band divided into 48 ‘chunks’ per antenna.
• SMA ASIC was XF architecture, in common with many others, including ALMA
• We now strongly favor FX architecture, supported by FPGA DSP technology.
5 GSa/s sampler is foundational wideband technology
(Jiang et al., PASP 126, 761; 2014; Patel et al., JAI 3, 1 2014)

Ultra Fast Analog-to-Digital Converters are typically interleaved multi-core devices
This introduces interleaving artifacts which must be calibrated

CASPER ROACH2 with Dual ASIIA ADCs
as configured for SWARM
Photo by Derek Kubo

(For more on CASPER see Hickish et al., JAI, 2016, accepted)
SWARM: SMA Wideband Astronomical ROACH2 Machine

(Primiani et al., JAI, 2016, accepted)

1 “quadrant”: 2 GHz per receiver per sideband = 8 GHz; 32 GHz total

Benefits relative to ASIC correlator:
1. high uniform spectral resolution with no sacrifice of bandwidth,
2. smaller footprint and power consumption.
3. better digital efficiency with 4-bit cross-correlation
4. 2 GHz wide bands easier to reduce, result in higher quality spectra
5. Natively supports VLBI phasing and recording, 16 Gbps/quadrant
6. Built with COTS components
“FGPA Utilization”: fine spectral resolution requires large FFTs will all the SWARM logic fit? (Primiani, Weintroub, deWerd, 2011)

https://www.cfa.harvard.edu/twpub/SMAwideband/MemoSeries/sma_wideband_utilization_1.pdf

\[M_{\text{PFB}} = D \log_2 ND + TD - 2D \]

Example calculation of “instantiated multipliers” needed in FPGA for large “polyphase filterbank” (a type of FFT with improved isolation)
SWARM FPGA logic subsumes great complexity
Primiani et al., JAI, 2016, accepted
Wideband spectrum 2 Quadrants of 4

Orion BN/KL line forest plot from Primiani et al., JAI, 2016, accepted
SWARM is EHT-ready
Phased ALMA to SMA Fringe, 22 Jan 2016
2015, 2016 annual campaigns observed and fringes verified.

Mk4/DiFX fourfit 3.11 rev 1291
correlation peak on 3C454.3 phased SMA to ALMA

3C454_3.ypukrr, No0018, AS
ALMA - SMAP, fgroup B, pol YL

Fringe quality 5
SNR 92.0
Int time 299.505
Amp 1.095
Phase 138.7
PFD 0.0e+00
Delays (us)
SBD -0.000043
MBD 0.000157
Fringe rate (Hz)
Ion TEC 0.051506
Ref freq (MHz)
226188.1969
AP (sec) 1.280

Geoff Crew, Mike Tttus,
Roger Cappallo, Adam Deller,
ALMA phasing Geoff Crew and Lynn Matthews, and many more!

A. Young, Primiani, K. Young,
Weintroub, et al., IEEE Phased
Array Conference, October 2016

SMA phasing efficiency on various sources, EHT campaign
4 April 2016
Primiani et al., JAI, 2016, accepted

(talk by Shep Doeleman, this symposium, on EHT)
A 4-bit correlator is more efficient than 2-bit

SiO maser in R-Cas was used to measure the ratio of SWARM/ASIC SNR.

ASIC SiO line is red. SWARM line is green.

By measurement, SWARM SNR is 11 +/- 3% better
SMA’s Future Upgrade: From 32 GHz to 56 GHz total BW
(14 GHz per pol per sideband 4-20 GHz; Tong & Grimes, et al, 2016)

- Simply keep building until seven SWARM “quadrants”?
- That may the the fastest “time to science”
- Safe and conservative; however, rather unimaginative
- What is the rationale to stretch in-house technology?
SMA’s Future Upgrade: From 32 GHz to 56 GHz total BW

Simply keep building until seven SWARM “quadrants”?

That may the the fastest “time to science”

Safe and conservative; however, rather unimaginative

What is the rationale to stretch our in-house technology?

Study Proposal Form

STUDY PROPOSAL TITLE:

DIGITAL CORRELATOR AND PHASED ARRAY ARCHITECTURES FOR UPGRADING ALMA

PRINCIPAL INVESTIGATOR: JONATHAN WEINTROUB

INSTITUTION: SMITHSONIAN ASTROPHYSICAL OBSERVATORY
Digital Correlator and Phased Array Architectures for upgrading ALMA

N.A. ALMA Development Study awarded to SAO
Study team kick off meeting at CfA, 10, 11 May 2016
A 10 GSa/s single core CASPER ADC
based on Adsantec ANST7120A-KMA
Jiang, Yu & Guzzino (2016)

Homin Jiang, ASIAA, with 10 Gsps ADC, yesterday

Analog frequency response 0 to 5 GHz
SKARAB: SKA Reconfigurable Application Board
(designed for MeerKAT by Peralex, South Africa, based on Virtex7 VX690T)

Technical Description

Product Description

The SKARAB is an extremely scalable, energy-efficient 1U 19" rack mount network-attached FPGA computing platform. The heart of the platform is a motherboard featuring a Xilinx Virtex 7 (XC7VX690T-2-FFG1927) FPGA that provides unparalleled I/O bandwidth (1.28 Tera-bits per second total bandwidth) to four custom mezzanine sites.

The FPGA features dedicated 1 Gb Ethernet and USB peripherals as supervisory and diagnostic interfaces, allowing highly scalable platform management (reconfiguration and health/status monitoring).

An advanced reconfiguration interface allows sub-second reconfiguration of the Virtex 7 FPGA over 1Gb Ethernet, enabling compute clusters to rapidly change function with minimal down-time.

Four symmetrical mezzanine sites provide flexibility in optimal balancing of I/O and/or local (cache) memories:
- A 4 x 40 Gb Ethernet mezzanine option supports high bandwidth, low latency Ethernet interfaces directly from the FPGA.
- A high performance memory mezzanine option features next-generation Micron Hybrid Memory Cube (HMC) technology, providing extremely high bandwidth, high capacity local cache memory.
- Multi-channel high speed ADC and DAC mezzanines can be implemented to support high performance Software Defined Radio (SDR).

A 5th COMExpress-compatible mezzanine site supports high-performance management processor sub-system (e.g. 4-core Intel Atom/NVidia Tegra K1).

A rich board support package is available to allow users to take full advantage of the platform's features and allow rapid customization to a specific application.

Applications

- High Performance Computing (HPC)
- Financial analysis/High Frequency Trading (HFT)
- Network packet analysis/routing
- Software defined radio (SDR)
- ASIC prototyping

Features

- Xilinx Virtex 7 (XC7VX690T-2-FFG1927) FPGA (3600 DSP Slices; 52Mb BRAM; 693120 LCs)
- Four high bandwidth mezzanine sites (1.28 Tbps total throughput): 4 x 40 GbE QSFP+ Mezzanine; Hybrid Memory Cube Mezzanine
- 5th COMExpress-compatible mezzanine site (optional)
- Support for Ethernet-hosted central cluster management
- Built-in health monitoring, logging and protection circuitry (voltage, current, temperature and fan monitoring/shutdown) for easy maintenance/reduced down-time.

- Henno Kriel, MeerKAT DSP engineer & CASPERite, with SKARABs
- August 2016, Pinelands, South Africa

Henno Kriel, MeerKAT DSP engineer & CASPERite, with SKARABs
August 2016, Pinelands, South Africa
SKARAB: SKA Reconfigurable Application Board
(designed for MeerKAT by Peralex, South Africa, based on Virtex7 VX690T)

The SKARAB is an extremely scalable, energy-efficient 1U 19” rack mount network-attached FPGA computing platform. The heart of the platform is a motherboard featuring a Xilinx Virtex 7 (XC7VX690T-2-FFG1927) FPGA that provides unparalleled I/O bandwidth (1.28 Tera-bits per second total bandwidth) to four custom mezzanine sites. The FPGA features dedicated 1 Gb Ethernet and USB peripherals as supervisory and diagnostic interfaces, allowing highly scalable platform management (reconfiguration and health/status monitoring).

An advanced reconfiguration interface allows sub-second reconfiguration of the Virtex 7 FPGA over 1Gb Ethernet, enabling compute clusters to rapidly change function with minimal down-time.

Four symmetrical mezzanine sites provide flexibility in optimal balancing of I/O and/or local (cache) memories:

- A 4 x 40 Gb Ethernet mezzanine option supports high bandwidth, low latency Ethernet interfaces directly from the FPGA.
- A high performance memory mezzanine option features next-generation Micron Hybrid Memory Cube (HMC) technology, providing extremely high bandwidth, high capacity local cache memory.
- Multi-channel high speed ADC and DAC mezzanines can be implemented to support high performance Software Defined Radio
- A 5th COMExpress-compatible mezzanine site supports high-performance management processor sub-system (e.g. 4-core Intel Atom/NVidia Tegra K1)

A rich board support package is available to allow users to take full advantage of the platform’s features and allow rapid customization to a specific application.

Applications
- High Performance Computing (HPC)
- Financial analysis/High Frequency Trading (HFT)
- Network packet analysis/routing
- Software defined radio (SDR)
- ASIC prototyping

Features
- Xilinx Virtex 7 (XC7VX690T-2-FFG1927) FPGA (3600 DSP Slices; 52Mb BRAM; 693120 LCs)
- Four high bandwidth mezzanine sites (1.28 Tbps total throughput): 4 x 40 GbE QSFP+ Mezzanine; Hybrid Memory Cube Mezzanine
- 5th COMExpress-compatible mezzanine site (optional)
- Support for Ethernet-hosted central cluster management
- Built-in health monitoring, logging and protection circuitry (voltage, current, temperature and fan monitoring/shutdown) for easy maintenance/reduced down-time.

ASNT7122-KMA
15GS/s, 4-bit Flash Analog-to-Digital Converter with HS Outputs

- 20GHz analog input bandwidth
- Selectable clocking mode: external high-speed clock or internal PLL with external reference clock
- Broadband operation in external clocking mode: DC-15GS/s
- On-chip PLL with a central frequency of 10GHz
- Selectable on-chip PRBS 2^{15}-1 generator for output data scrambling
- Differential CML input clock buffer and output data and clock buffers
- Differential linear data input buffer
- LVDS input reference clock buffer
- Selectable on-chip digital-to-analog converter for self-testing
SERDES Transceivers:
GTP, GTX, GTH, GTZ

GTH features:
- 7 tap decision feedback equalizer (DFE) vs 5-tap for GTX
- Rx reflection cancellation
- In the Tx, the "Phase Interpolator PPM Controller" which allows fine-grain adjustment of the Tx phase

VC709 Xilinx V7 Evaluation Board
bargain basement price: $4995

2 to 8.2 GHz Noise passband
power spectrum of 3-bit sampled noise

SAO 20 GS/s ADC based on Hittite HMCAD5831LP9BE, single core
(Weintroub and Raffanti, ISSTT, 2015)

Funded by SI Competitive Grants Program for Science

“sparkle codes” ~ 1 in 1000 frequency

persistence display
The best way to predict the future is to create it
Abraham Lincoln

All goals for SWARM set at project inception are met

Engineering decisions made at the outset are validated:
- Quad-Core wideband ADC technology for science-quality data
- Full featured FPGA logic with ability to project required resources
- Fit in FPGA a hi-res FX correlator with EHT phasing and recording
- FX wideband phased array . . . and more

The future is bright:
- Quad4 build will complete 32 GHz SWARM this calendar year…
- …then develop and access yet wider band ADC, FPGA technology…
- …apply our expertise to upgrade ALMA…
- …and build skills and capacity in DSP for broad application!
“With correlator performance having gone up by a factor of 922,000 over the last 30 years, it's only fair that correlator design engineers' salaries should have gone up by a similar factor”

Ray Escoffier, leader of N.A. ALMA correlator team, over a decade ago
Questions?

THE VERY LARGE TELESCOPE
THE EXTREMELY LARGE TELESCOPE
THE OVERWHELMINGLY LARGE TELESCOPE
THE OPPRESSIVELY COLOSSAL TELESCOPE
THE MIND-NUMBINGLY VAST TELESCOPE
THE DESPAIR TELESCOPE
THE CATACLYSMIC TELESCOPE
THE TELESCOPE OF DEVASTATION
THE NIGHTMARE SCOPE
THE INFINITE TELESCOPE
THE FINAL TELESCOPE

(canceled)

xkcd.com
mean $\phi_{\text{rms}} \sim 9$ degrees

5 minutes
APHIDS is GPU-accelerated post processing software built on #| by Dave MacMahon, developed primarily by André Young and Katherine Rosenfeld, with help from Lindy Blackburn and Rurik Primiani.

https://github.com/david-macmahon/hashpipe

APHIDS converts spectral-domain SWARM data to the equivalent time-domain R2DBE data, which includes resampling, filtering, and frequency conversion.

GPU acceleration means the ultimate goal of real-time on-the-fly “may be possible”.
The Importance of Phase

Oppenheim & Lim, 1981